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Motivation
Intelligent agents are becoming increasingly important.



Motivation
• Most intelligent agents today are carefully designed 

for very specific tasks
• Ideally, we could avoid a lot of work by letting the 

agents train themselves
• Goal: provide a general purpose agent 

implementation based on reinforcement learning
• Target audience: Application developers (especially 

roboticists and game developers)



Reinforcement Learning
• Learning how to 

behave in order 
to maximize a 
numerical reward 
signal

• Very general: lots 
of real-world 
problems can be 
formulated as 
reinforcement 
learning 
problems



Reinforcement Learning
• Typical challenges:

– Temporal credit assignment
– Structural credit assignment
– Exploration vs. exploitation
– Continuous state spaces

• Solutions:
– TD learning with value function and policy represented 

as single-layer neural networks
– Eligibility traces for connection weights
– Softmax action selection
– Function approximation with Gaussian radial basis 

functions



RL Agent Implementation
• Value function: maps 

states to “values”
• Policy: maps states to 

actions
• State representation 

converts observations 
to features (allows 
linear function 
approximation 
methods for value 
function and policy)

• Temporal difference 
(TD) prediction errors 
train value function 
and policy



RBF State Representation



Verve Software Library
• Cross-platform library written in C++ with 

Python bindings
• License: BSD or LGPL
• Unit tested, heavily-commented source 

code
• Complete API documentation
• Widely applicable: user-defined sensors, 

actuators, sensor resolution, and reward 
function

• Optimized to reduce computational 
requirements (e.g., dynamically-growing 
RBF array)

http://verve-agents.sourceforge.net

http://verve-agents.sourceforge.net/


Free Parameters
• Inputs

– Number of sensors
– Choice of discrete or continuous (RBF)
– Continuous sensor resolution
– Circular continuous sensors

• Number of outputs
• Reward function
• Agent update rate (step size)
• Learning rates
• Eligibility trace decay time constant
• Reward discounting time constant



C++ Code Sample (1/3)
// Define an AgentDescriptor.
verve::AgentDescriptor agentDesc;
agentDesc.addDiscreteSensor(4); // Use 4 possible values.
agentDesc.addContinuousSensor();
agentDesc.addContinuousSensor();
agentDesc.setContinuousSensorResolution(10);
agentDesc.setNumOutputs(3); // Use 3 actions.

// Create the Agent and an Observation initialized to fit this Agent.
verve::Agent agent(agentDesc);
verve::Observation obs;
obs.init(agent);

// Set the initial state of the world.
initEnvironment();



C++ Code Sample (2/3)
// Loop forever (or until some desired learning performance is achieved).
while (1)
{

// Set the Agent and environment update rate to 10 Hz.
verve::real dt = 0.1;

// Update the Observation based on the current state of the world.  
// Each sensor is accessed via an index.
obs.setDiscreteValue(0, computeDiscreteInput());
obs.setContinuousValue(0, computeContinuousInput0());
obs.setContinuousValue(1, computeContinuousInput1());

// Compute the current reward, which is application-dependent.
verve::real reward = computeReward();

// Update the Agent with the Observation and reward.
unsigned int action = agent.update(reward, obs, dt);



C++ Code Sample (3/3)
// Apply the chosen action to the environment.
switch(action)
{

case 0:
performAction0();
break;

case 1:
performAction1();
break;

case 2:
performAction2();
break;

default:
break;

}

// Simulate the environment ahead by 'dt' seconds.
updateEnvironment(dt);

}



Examples
• 2D Maze

• Pendulum swing-up

• Cart-pole/inverted pendulum



2D Maze Task



Pendulum Swing-Up Task



Pendulum Neural Networks



Cart-Pole/Inverted Pendulum 
Task



Experimental Feature -
Planning

• Planning: training the 
value function and 
policy from a learned 
model of the 
environment (i.e. 
reinforcement learning 
from simulated 
experiences)

• Reduces training time 
significantly

2D Maze Task with Planning



Experimental Feature -
Curiosity

• Curiosity: an intrinsic 
drive to explore 
unfamiliar states

• Provide extra rewards 
proportional to 
uncertainty or “learning 
progress”

• Drives agents to 
improve mental models 
of the environment 
(used for planning)

Multiple Rewards Task with Curiosity



Future Work
• The exhaustive RBF state representation is too slow 

for high-dimensional state spaces. Possible solutions: 
dimensionality reduction (e.g., using PCA or ICA), 
hierarchical state and action representations, and 
focused attention

• Temporal state representation (e.g., tapped delay 
lines)
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