
Preface
10 Years Later

It has been over 10 years since writing this document, and nearly that long
since the project was last active. I think there were good ideas here. Many
of them I still find interesting, a few of them I’d like to change, and some
I think may be useful to others. In any case, I thought it might be helpful
to post it online along with a few brief comments, at least as a historical
record of what I was thinking in 2009.

This project always involved a certain amount of risk. It attempted to
achieve two challenging goals simultaneously: 1) a reasonably accurate model
of brain structure and function, and 2) a general purpose learning system to
be implemented in software. It seemed clear from the start that, due to the
ambitiousness of these endeavors, both might suffer. Indeed, I think they
did suffer to an extent, but I’m not unhappy with the result. I expected it to
be a work in progress... a sort of research conversation starter. The various
components were to be first approximations, not detailed models, of the ac-
tual brain regions. The theme was brain-inspiration, not brain replication.
Borrowing from [8]:

What we have outlined here is an ambitious program, and cer-
tainly we have not reached anything like completion. [...] It is
much easier to convey the sense of ‘work in progress’ when speak-
ing than when writing, and we hope that the necessary formali-
ties of text do not obscure the fact that we are still groping for the
correct formulation of our ideas. We also hope that, incomplete
as it is, others will find the current state of our understanding
useful and perhaps even provocative.

That being said, I would like to write down here a few specific changes I
would make, given the benefit of hindsight, and to describe my personal
shift in research direction in the years following this work.

1

Learning Instability

One practical problem became apparent when I was implementing and test-
ing the first version of the Sapience software. I saw a sort of instability that
occurred when the system was learning both perceptions and actions on-
line. Given a random initial control policy, it would learn to represent the
resulting observations, and given that sensory representation, it would try
to improve its actions. Unfortunately, this dual optimization would often
result in a terribly useless result, essentially getting “stuck in a corner” of
sensory/motor space. After getting stuck, it would simply learn to devote
all perceptual resources towards representing a single observation (the “cor-
ner”). This often occurred after receiving a reward, in which case the action
just preceding the reward would be reinforced. But with the perceptual sys-
tem not yet established, there was no clear mapping from sensory data to
any particular internal state, so it could not learn to associate the action
with any context. Instead, the action was presumably being reinforced in all
states. Thus, it would end up with the entire sensory system trained on a sin-
gle unchanging input pattern, and one motor output pattern being repeated
indefinitely. In short, the overall learning process was highly unstable.

This problem was both frustrating and interesting. The solution I found at
the time was to avoid learning from immediate observations, and to store
all observed data in a sort of repository to be learned from later. So the
system’s experience was separated into distinct “experience” and “learning”
(or “awake” and “asleep”) phases: one for information gathering, and the
other for learning. During the learning phase, data from the stored repository
was replayed in a shuffled order, sampled according to some distribution. I
initially resampled the data uniformly (i.e. according to the experienced
distribution), but later achieved better results with a biased distribution
which was weighted by motivational relevance (e.g. temporal difference error
magnitude).

Interestingly, the idea of “experience replay” (or “hippocampal replay”)
seemed to have a lot to do with certain phases of sleep. Research on live
animals shows experience gathered while awake being replayed in various
ways (shuffled order, backwards, etc.) during sleep. Also, in the machine
learning literature, it appears that the experience replay approach has be-
come popular in recent years due to the stability it provides. It is worth
noting that much of the underlying issue here, i.e. learning from online vs.
stored experience, has long been discussed in the reinforcement learning

2

literature, especially when using nonlinear function approximators. Guar-
anteeing stability in such scenarios has always been an imporant research
problem. I think I learned this lesson the hard way.

Architecture Improvements

If I were to produce a second version of the Sapience architecture, I’d make
the following changes:

• The Sequential Memory component was originally described as analo-
gous to the hippocampus, but I think it should represent the thalamus
instead, or at least certain aspects of it. The thalamus makes more
sense as the link between successive sensorimotor states. In addition,
this component should have input/output links with all nodes in the
Sensorimotor Belief Network, not just the root node.

• The hippocampus should be represented by a new component (called
e.g. the Data Archive) whose role is to store observations for later
learning. This is directly related to the above discussion on “experience
replay.”

• The Sequential Decision Memory should have used a standard rein-
forcement learning algorithm (e.g. an actor-critic architecture with
temporal difference learning) rather than the PVLV method. I had
decided to base this component on PVLV because I saw it as the most
well-defined functional model of the basal ganglia available in the lit-
erature. However, a more standard algorithm would have been much
more straightforward to implement, test, and understand in relation
to the other components the architecture.

Broadly speaking, a different (probably better) way to develop a general
purpose brain-inspired cognitive architecture like Sapience would be to start
from a solid theoretical foundation, e.g. considering the set of all probabilistic
models, and then gradually incorporating constraints from biology. This
would help maintain a sense of confidence in the result. What I did instead
was essentially the opposite, starting with a high-level structure based on the
various brain regions and their connectivity, then trying to find algorithms
to fit the presumed function of each brain region.

3

Change of Focus

I have not worked on this project since 2010. Within a year after writing the
following document, I began to realize the difficulty of trying to maintain
both biological plausibility and practical functionality in the same design.
My attention was divided trying to satisfy the two simultaneously. It seemed
prudent to choose one or the other, so I began to shift my focus away from
the brain-inspired approach and move towards a deeper understanding of
machine learning principles.

This was a difficult transition, as I had always gained a great deal of in-
spiration from studying biological intelligence, but ultimately I cared more
about finding better learning algorithms. Also, I enjoyed the measurability
of progress that is inherent in machine learning research. The alternative
(construct biologically realistic brain models) presented a different set of
challenges that did not appeal to me as a researcher (e.g. trying to convince
an audience that “This is how the brain works...”).

Over the next few years, I worked to solidify my knowledge of core concepts
like Bayesian inference, information theory, and probabilistic graphical mod-
els. As I gained improved understanding of these topics, I saw the importance
of deriving learning methods from principled objectives. This path held a
certain reassurance that was hard to ignore.

Now in 2020, my overarching research goals are similar to those back in 2009,
but with improved theoretical foundations. I continually search for ways
to derive and design methods that are more simple and elegant. I think
it’s possible that all aspects of Sapience here could emerge automatically
from a simple but powerful machine learning model. Specifically, consider
the purpose of the various Sapience components: high-dimensional multi-
modal observation and action representations, temporal pattern learning,
reinforcement learning, high-dimensional action memory, and long-range
context storage/retrieval. All of these aspects might possibly emerge nat-
urally from a single powerful model class (e.g. some form of graph-based
model, which could be either directed or undirected and either probabilis-
tic or deterministic), paired with efficient inference and learning algorithms.
This general mindset is what drives my current work, and I am excited to
see where it leads.

Tyler Streeter
December 2020

4

Sapience: A Brain-Inspired Cognitive
Architecture

Tyler Streeter

June 1, 2009

Thesis proposal for the degree of Doctor of Philosophy

Human Computer Interaction

Iowa State University

Program of Study Committee

James Oliver, Major Professor

James Bloedel

Steven Herrnstadt

Adrian Sannier

Alex Stoytchev

Eliot Winer

5

Abstract

We present a novel cognitive architecture, Sapience, inspired by
the high-level organization of the mammalian brain. This architec-
ture includes five components based on abstract functional representa-
tions of the brain’s sensorimotor cortex, hippocampus, basal ganglia,
cerebellum, and prefrontal cortex regions. Each component provides
a unique computational benefit to the system. Our focus is primarily
biologically-inspired engineering, not biologically plausible brain mod-
eling. Simply, we aim to build a useful artifact, not explain brain func-
tions, although the latter is hopefully achieved to some degree. We
intend the Sapience architecture to be applicable generally to all kinds
of applications involving autonomous real-time learning and control,
including video games and robotics. Crucially, it is designed to be prac-
tical: fully implementable in software, scalable in performance based
on available computing hardware, and general enough to be applied to
a wide variety of control problems.

The objective of our system is to learn complex motor control tasks
defined as reinforcement learning problems. This includes any general
situation involving real-valued arrays of sensory inputs and motor out-
puts. The system’s behavior is shaped by two sources of reinforcements:
1) external rewards for achieving goals, defined by the programmer, and
2) internal rewards for improved understanding of the world, aka “cu-
riosity rewards.” This curiosity drive is based on recent theoretical work
in artificial curiosity which provides a powerful model of autonomous
self-development.

Our contribution is a concrete, implementable, brain-inspired cog-
nitive architecture which integrates several key features. It uses a gen-
eral environment interface definition (real-valued arrays) for sensory
inputs (visual images, audio, proprioception, touch, etc.) and motor
outputs (servo control variables). It uses topographic maps to learn
mappings from arbitrary sensor arrangements. It learns a robust prob-
abilistic context representation using a hierarchical Bayesian network
with adaptable (unsupervised learning) kernel mixture models for the
conditional probability distributions. It learns sequential pattern stor-
age and recall of Bayesian priors. It performs reinforcement learning
of context-dependent actions based on external and internal rewards.
It uses a curiosity drive based on world model improvements, which
encourages active sensory exploration. It learns to automate parallel ac-
tion selection via supervised learning. Finally, it includes a gated work-
ing memory with read/write actions, enabling reinforcement learning
of arbitrary programs.

After describing both the high-level and component-level architec-
ture design, we evaluate our implementation on several experiments. A
simulated testing environment is employed involving a 3D physically

6

realistic human arm and hand with tactile, visual, and propriocep-
tive sensory inputs and servo-like motor outputs. The Sapience imple-
mentation is connected to this simulated body, and we selectively en-
able and disable its various components, measuring changes in learning
progress, with the intent of showing distinct computational benefits for
each component. The primary metrics of learning progress are based
on the system’s two objectives: achieving externally-defined goals and
improving the internal world model.

7

Contents
1 Introduction 10

1.1 General Strategy . 11
1.2 Outline of Thesis . 14

2 Learning Objectives 14
2.1 Reinforcement Learning . 15
2.2 Model Learning . 16

2.2.1 Prediction and Compression 16
2.2.2 Compression Progress 18
2.2.3 Measurable Objective 19

2.3 Two Learning Objectives and Metrics: External Rewards &
Compression Progress . 19

3 The Sapience Architecture 20
3.1 Brain Inspiration . 20
3.2 High-Level Description . 23
3.3 Update Process . 25

4 Sensorimotor Belief Network 28
4.1 Inspiration from the Sensorimotor Cortex 29
4.2 Functional Abstraction . 33
4.3 Bayesian Inference . 34
4.4 Generating Symbols via Unsupervised Learning 36

4.4.1 Symbolic Representation 37
4.4.2 Data-driven Symbol Learning Based on Infomax . . . 38

4.5 A Robust Learning Kernel Mixture Model Algorithm 41
4.6 Hierarchical Empirical Bayesian Network 48
4.7 Measuring Model Improvements 52

4.7.1 Data Prediction Error 52
4.7.2 Information Gain . 52
4.7.3 Curiosity Rewards . 53

4.8 Producing Motor Outputs . 54
4.9 Bootstrapped Motor Development via Reflexes 54

5 Sequential Memory 55
5.1 Inspiration from the Hippocampus 56
5.2 Functional Abstraction . 57
5.3 Dynamic Reconstruction Algorithm 58

8

6 Serial Decision Maker 60
6.1 Inspiration from the Basal Ganglia 60
6.2 Functional Abstraction . 62

7 Parallel Decision Memory 64
7.1 Inspiration from the Cerebellum 64
7.2 Functional Abstraction . 66

8 Working Memory 66
8.1 Inspiration from the Prefrontal Cortex 66
8.2 Functional Abstraction . 69

9 Completed Work 71
9.1 Component Implementations 71
9.2 Architecture Probe Tool . 72
9.3 Simulation Platform . 72
9.4 Initial Runtime Performance Test 76

10 Proposed Work 78
10.1 Experiment Set 1: Passive Data Compression 78
10.2 Experiment Set 2: Active Data Compression 79
10.3 Experiment Set 3: External Reward Acquisition 79
10.4 Optional Experiments . 79

10.4.1 Parallel Decision Memory Benefits 80
10.4.2 Working Memory Benefits 80
10.4.3 Improved Kernel Mixture Model Learning Rule 80

References 83

9

1 Introduction

Our species has the distinct ability to accumulate knowledge across gener-
ations. Any new useful knowledge gained by one generation is passed on to
the next. (By “useful” we mean knowledge that helps us achieve our goals.)
Thus, we are involved in a long sequence of cultural evolution, survival of
the fittest ideas. Similar to biological evolution, which uses mutation-based
exploration of gene space to achieve its goals (proliferation of stable genes),
human cultural evolution uses our curiosity-based exploration through idea
space to achieve human goals.

An important component of our cultural evolution is the evolution of our
technology. We leverage technology to extend our reach in every domain,
both physically and mentally. We utilize physical technologies to shape the
physical world, and we use information technologies to enhance our men-
tal (computational, memory, and communication) abilities. Each successive
generation in our technological evolution helps us achieve our goals more
quickly and efficiently; we continually achieve more with less effort, increas-
ing global wealth, enabling us to focus on new problems with more powerful
tools. Arguably, this progression is generally beneficial to our global soci-
ety. Although technology both amplifies our constructive and destructive
behaviors, the benefits usually outweigh the risks.

One particular milestone in the progression of human technology will be
the creation of an intelligent entity with mental capabilities comparable to
our own. Such a system would necessarily be as capable as a human in all
kinds of tasks, including physical and mental labor. The mass production of
such systems, designed to assist in solving human problems, would greatly
accelerate the growth of global wealth and, therefore, lead us more quickly
to a better society.

Now, at the “knee of the curve” [30] in our technological progress, the nec-
essary computing hardware for a human-level artificial intelligence will be
available very soon (if it does not already exist in some form). However,
much work remains to be done in terms of designing and implementing the
necessary software systems which capture, in some form, the intelligent pro-
cess running within our own brains. Such an advance is arguably one of
the most important conceptual and technological achievements possible, as
enunciated by William James in 1904 – “the scientific achievement, before
which all past achievements would pale” – in 1904 and more recently by
Bill Gates – “If you invent a breakthrough in artificial intelligence, so ma-

10

chines can learn, that is worth 10 Microsofts.” Therefore, our goal is to make
progress towards the practical design and implementation of human-like ar-
tificial intelligence. In this document we describe one possible design of such
a system.

We do not discuss here the vast array of societal and ethical implications of
such a creation. Fortunately, public awareness of these issues is rapidly grow-
ing due to efforts by various organizations (e.g., The Singularity Institute for
Artificial Intelligence). By actively working toward this goal, however, we are
asserting that, although such an intelligent system is potentially dangerous,
the probable benefits will outweigh the probable risks.

In this introductory chapter we discuss various possible approaches to devel-
oping advanced AI, especially our chosen brain-inspired engineering strategy
– to design a brain-inspired cognitive architecture which is directly imple-
mentable in software and can be embodied within simulated avatars and
real robots.

1.1 General Strategy

There are many possible routes towards advanced AI. Some of these options
include artificial evolution of neural networks [59], cognitive architecture
engineering (SOAR [31], ACT-R [5], brain-inspired [18, 43], 4D/RCS [3],
OpenCog Prime AGI [47]), complete neuron-level brain simulation [38], and
intelligent search within program space [54, 37, 29]. Currently it is difficult to
tell which approach is most promising, but it seems likely that each method
will provide us with a unique understanding of intelligence.

The approach we adopt here is an engineered brain-inspired cognitive ar-
chitecture. Besides utilizing results from machine learning and information
theory, we gain inspiration from the mammalian brain, a powerful existence
proof that advanced intelligence is possible. In this respect, our approach is a
blend of the cognitive architecture, neural network, and neuroscience-based
methods. We attempt to gather the best existing machine learning algo-
rithms and use them to engineer software-based modules based abstractly
on the major brain regions. Within the spectrum of brain-based systems,
with "realistic brain models" on one end and "abstract engineered systems"
on the other, our approach falls on the abstract side. We are less concerned
with biological realism (making comparisons with known biological or psy-
chological results), more with producing a practical, implementable archi-

11

tecture. We attempt to focus on the most important large-scale biological
constraints, mimicking finer details only when they appear to provide sig-
nificant functional advantages.

Even after narrowing our scope to brain-inspired architectures, there are still
an overwhelming number of decisions to be made. When engineering a brain-
like system, exactly how much detail should be included? If we try to include
too many details, the system runs the risk of growing too complex, too
difficult to implement, and too time-consuming to evaluate. If we abstract
away too much, we run the risk of over-simplifying the brain’s organization
and losing any benefit of studying it in the first place. The difficulty is in
deciding what to keep and what to ignore.

Here we focus on the brain’s systems-level structures and functionality, i.e.
the largest, highest-level brain structures. Namely, we include in our archi-
tecture components corresponding to the sensorimotor cortex, hippocampus,
basal ganglia, cerebellum, and prefrontal cortex. Our general strategy is to
replicate the assumed functional role of each of these structures, preferring
more abstract representations where possible, but sometimes using more de-
tailed components when there is a clear advantage to doing so. In designing
each component, we progress through three main bodies of knowledge: neu-
roscience literature, systems-level computational brain models, and machine
learning algorithms. The neuroscience literature provides general constraints
on each brain region: how it is connected to other regions and how its re-
moval affects behavior. Computational models provide a certain level of
abstraction, removing many of the biological details and focusing squarely
on function. Finally, machine learning algorithms can be seen as the most
abstract, idealized versions of what the various brain regions are "trying to
do."

In this architecture we include only the most prominent structures and just
a subset of the interconnections present in the real mammalian brain. This
simplification can be justified in that there is still much uncertainty about
which connections are functionally important. In the brain every major
structure is connected to nearly every other major structure to some degree;
the difficulty lies in determining which connections truly provide crucial
functions. Are some connections redundant? If we cut one connection, can
its role be fulfilled by another? Are some connections “accidental,” merely a
result of imprecise growth algorithms during initial development? Are some
connections simply evolutionary baggage which don’t provide any benefit or
drawback to the organism? These questions are very difficult to answer, but

12

there are ways to gain intuition about them. For example, if we study the
relative sizes of various connections, we can see that some are much larger
and, when lesioned, result in much more severe behavioral deficits.

Another way to approach the problem is this: what was evolution trying
to create? In other words, we can interpret biological evolution as an in-
telligent process with certain design goals. (Whether this interpretation is
true is not the issue, and indeed the question might not even be mean-
ingful. We only care about whether it is a useful concept in teasing out
the brain’s functions.) Helpfully, we can assume that each brain region has
evolved to solve a particular problem while minimizing functional redun-
dancy with the existing parts. This view is presented in [6], where the au-
thors describe three distinct brain regions (posterior cortex, hippocampus,
and basal ganglia/prefrontal cortex) as each solving fundamentally different
computational problems. Similarly, Doya [15] describes the cerebral cortex,
basal ganglia, and cerebellum in terms of three distinct learning principles
(unsupervised learning, reinforcement learning, and supervised learning, re-
spectively). These types of analyses provide much guidance in terms of un-
derstanding the global brain architecture.

Our brain-inspired cognitive architecture, which we call Sapience, is de-
scribed in detail throughout this thesis. Some details of our architecture
are currently still in flux. Due to time constraints, we have not yet tested
each component extensively, much less the entire integrated system operat-
ing within a real or simulated body. Despite its current status, our system
provides a novel, cohesive system which connects many complex components
and provides an excellent platform for experimentation with embodied in-
telligent systems.

Our general research strategy has been the following: start with literature
(neuroscience and machine learning) related to each of the five components,
design and implement an abstract representation of each component, and
perform many component-level tests (simulations with real-time visualiza-
tion). To test the entire integrated system, we plan to develop a curriculum
of increasingly difficult tasks, starting with the experiments performed in
this thesis.

Note that this work primarily comes from the same inspiration as the au-
thor’s master’s thesis research [60, 63]: that it is desirable to have a general
intelligent software system which can be applied to a wide variety of learning
tasks with minimal changes. The work described here, however, is intended
to be much more robust, scalable, and useful.

13

1.2 Outline of Thesis

Chapter 2 explicitly describes the learning objectives of our architecture,
which provide constraints on the architecture and concrete metrics we can
use to evaluate its performance. Chapter 3 presents a high-level overview of
the architecture. The following several chapters describe in detail the core
functional components of the architecture, including the biological inspi-
ration for each, the design of our functional abstraction, and the various
algorithms employed. We then list the work completed already (implemen-
tation and testing framework) and a set of proposed experiments on which
we will evaluate the architecture implementation.

2 Learning Objectives

In this chapter we define the overall learning objectives for our architecture,
which will influence many aspects of its design.

What is the overall “purpose” of our system? Put simply, it should learn to
achieve goals as quickly as possible with minimal human intervention. It is
most helpful to classify it as a reinforcement learning agent which tries to
maximize its long-term reward intake. Within the theoretical reinforcement
learning framework, we can make the concept of a “goal” very concrete by
speaking in terms of rewards (positive reinforcement). Any task with clearly-
defined goal states can be considered as a reinforcement learning problem,
where we provide a reward signal to the learner when the goal state is
reached. Thus, if the system learns to maximize rewards, we can say that it
is achieving its goals. Fortunately, reinforcement learning requires relatively
little human intervention; once the problem has been defined in terms of
rewards, the agent learns primarily from trial-and-error, not from a teacher
providing constant feedback.

We divide the set of reinforcements into two varieties: 1) external, provided
by the programmer, and 2) internal, provided by the curiosity drive.

External Reinforcement External reinforcements are defined arbitrarily
(e.g., by the programmer, by artificial evolution, etc.) to achieve some desired
task and correspond conceptually to goal states. Qualitatively, we want our
system to do what we ask of it – to complete its given task. Quantitatively,
this occurs when the system learns to maximize its external reward intake.

14

Internal Reinforcement Internal reinforcements are a special type which
motivate active exploration and model learning, as described below. Quali-
tatively, we want our system to display intrinsically-motivated exploration,
play behavior, and to seek out interesting situations. Quantitatively, this
occurs when the system learns to maximize its internal reward intake.

2.1 Reinforcement Learning

Here we describe briefly the process of reinforcement learning, which applies
to all types of rewards (external and internal). One of the most well-cited
sources on theoretical reinforcement learning is the textbook by Sutton &
Barto [66].

The general reinforcement learning problem is this: an “agent” (autonomous
system) lives in a world which, at each instant, provides the agent with
a sensory observation and a reinforcement signal (a positive or negative
scalar). Upon receiving the observation and reinforcement the agent must
choose an appropriate action to execute, which will influence the environ-
ment and the subsequent observation and reinforcement. The agent must
learn to choose its actions to maximize its long-term reinforcement intake.
The reinforcement signal is problem-specific and should be chosen to repre-
sent the intended goals for the agent. Usually the agent utilizes an internal
world model to make decisions.

Where do the reinforcement signals come from? Biologically, they are de-
fined in our brains as a set of reward/punishment signals which represent
evolutionarily-defined goals (food, water, mating, pain, etc.). Within our
computational system, in general they can be specified arbitrarily to fulfill
any desired task. Intuitively, the situation is similar to training a dog: all
kinds of desired behaviors can be elicited from the dog as long as a reward is
given immediately afterward. Notably, only one type of reward (e.g., a dog
treat) is needed for all types of behavior. This greatly simplifies the over-
all process: the trainer does not need to provide detailed feedback about
the dog’s behavior, only the sparse signal at the very end (either a treat or
no treat). In the same way, we can design a reinforcement learning system
to perform a wide variety of tasks, all using the same type of externally-
provided reward - in our case, a simple numerical signal (for example, a
decimal value within [0, 1])1.

1Note that this process requires the learner to recognize some pattern/place/object as
being consistently paired with a reward. In the dog training example, the sight and smell

15

For our purposes the reinforcement learning framework provides a very use-
ful abstraction of all kinds of learning tasks. It considers reward maximiza-
tion as the core thing an agent tries to do; essentially, the ultimate purpose
in an agent’s life is to find more rewards and avoid punishment. With rein-
forcement learning as the core principle, any auxiliary computational system
can be added which improves the agent’s reward acquisition rate, whether
by improving its world model, enabling it to plan ahead, favoring novel sit-
uations, etc. Indeed, we might even say that reinforcement learning is the
easy part, given a good world model; the hard part is learning a good model
of the world with which to make good decisions.

2.2 Model Learning

A reinforcement learner will only be as successful as its model of the world.
Therefore, in parallel with the reinforcement learning process (i.e. learning
context-dependent values and actions), the system should learn to improve
its world model (the Sensorimotor Belief Network in our architecture, de-
scribed later). To the extent that this model accurately reflects the true
state of the world, the system will be more successful at achieving its goals
(maximizing rewards).

Here we discuss the general process of learning a world model and how
its progress might be measured. The ultimate goal for a world model is to
achieve perfect predictions (zero prediction errors), which is closely related
to data compression.

2.2.1 Prediction and Compression

At each instant, any learner receives sensory data samples – snapshots of the
state of the universe – which are limited to the current instant in time, lim-
ited to a very small piece of space, and are corrupted by the noisy transduc-
tion process of sensation. These data samples, despite their imperfections,
are all that is available to the learner from which it must build a model of
the world. What is the best way to build such a model based on the given
data samples?

of a treat is associated with upcoming reward. In the case of a simulated entity or real
robot, this might be a special object that is rewarding to touch, which can be provided
by the programmer for a short time upon completing a task.

16

First, we can start by considering a theoretical perfect world model, which
contains an exact copy of the true external world, including the processes
which generate noise during sensory transduction. Further, let’s assume that
this perfect model does not compress anything: it simply contains a huge
array representing the state of the universe at each point in time (e.g.,
all state variables of all subatomic particles). Such a model would be able
to predict sensory data perfectly at each instant. This would be the best
possible resource for a reinforcement learning system which had the luxury
of infinite computational resources. We could say that the ultimate world
model would be the one with perfect sensory predictions. This serves as a
learning target for non-optimal world models.

Next, let’s consider a variation where the perfect world model is also com-
pressed in a lossless manner. Rather than simply storing the entire state of
the universe, it might contain models of all physical processes. Thus, instead
of using an exhaustive table to store the state of things, it uses generative
models to compute the state of things. (In [13], Chapter 10, the general prin-
ciple behind “representational learning” is to learn “causal models” of the
world, i.e. models of the processes which caused the sensed data samples.)
Since we’re assuming lossless compression, we can assume that the system’s
predictive capabilities remain identical to the uncompressed model. It is still
a perfect predictor, but it uses a different internal representation.

Taking things one step closer to reality, what if limited memory storage con-
strained the world model to be compressed in a lossy manner? It would no
longer be a perfect predictor since some details would be lost due to com-
pression. Its sensory predictions would now have some non-zero degree of
error. Before we said that a perfect world model would make perfect pre-
dictions. An imperfect world model should produce predictions which are as
good as possible, given its limitations. This is achieved if the world model
prioritizes its resources to model those physical processes which provide the
best predictive capabilities, i.e. those that provide the greatest compression
of sensory data. The more a model can compress, the better it can predict
because it is implicitly better at capturing the underlying data-generating
process. Since data prediction and data compression are essentially equiva-
lent, we could say that the ideal realistic (lossy-compressed) world model is
the one that compresses the most data.

17

2.2.2 Compression Progress

In most unsupervised machine learning situations, data samples are provided
by some external system. Thus, the learner’s goal is to model the distribu-
tion of the provided data space. Performance can be measured based on
compression over the given data set.

When the learner has an active role in choosing its own data samples, the
situation is fundamentally different. Here the learner is performing what
Schmidhuber calls “active unsupervised learning” [53]. Assuming that the
learner lives in a complex environment, and that it will never experience
all possible data samples in its lifetime (or even come close), it is in the
learner’s best interest to find those data samples that provide the most ben-
efit/the greatest reduction in uncertainty/the greatest model improvements.
Now, instead of simply focusing on how well a model compresses a static
data set, we must encourage the learner to find good data samples. This
is the essence of Schmidhuber’s principle of “artificial curiosity,” reviewed
in [53]. This simple principle provides a powerful approach to the problem
of autonomous sensory data selection. If a learner has a limited lifetime
(a realistic assumption), it must focus its sensory apparatus in a way that
improves its world model quickly. The learner cannot waste much time on
uninformative data2. It should try to compress as much data as possible per
unit time.

To explain things in another way: in a memory space- and processing time-
limited learner, there are multiple sources of modeling error. One source,
discussed in the previous section, is lossy data compression. Another source
of error, which is not as obvious, is a poor sampling of the sensory space
– lack of experience. Any lossy-compressed model can be evaluated on a
given data set, but in general the data set is not given, it must be chosen
by the learner itself. Most unsupervised machine learning problems assume
a fixed data set: the learner is isolated from the world except for the data
samples provided by some external entity which decides the data distribu-
tion, and the learner must simply compress the given data. In contrast, for
an embodied learner operating in a complex environment with potentially
limitless data samples, the data distribution is not fixed beforehand. It is
not good enough to sit in one place and wait for data to appear. Rather,
the learner actively chooses its own path through sensory space, i.e. its own

2Intuitively, the most informative data is often that which demonstrates distinctions
between categories.

18

data distribution. Its actions should be guided towards those parts of the
world that provide the greatest improvements to its world model.

How can this be implemented within a reinforcement learning system? As
initially described by Schmidhuber [52], a curiosity drive can be implemented
as an extension of an existing reinforcement learning system, where the
learner is simply given extra rewards whenever it makes improvements to
its world model. Schmidhuber’s principle appears to be general enough to be
useful for any intelligent system which includes a learned world model. As re-
inforcement learning in complex environments is utterly dependent upon an
accurate representation of the world, we assume that such an internal drive
to improve the world model should be a standard, hard-wired motivation3.

2.2.3 Measurable Objective

Two types of model errors exist: limited storage space necessarily demands
lossy compression errors, and limited time necessitates an incomplete data
sampling of the world. These errors demonstrate two different needs for
our system: compression errors on the given sensory data can be improved
by improving the world model’s internal representation (through learning),
and errors due to a poor sensory sampling can be improved with a good
action selection system which is motivated to find more informative data
samples. Both types of improvements are reflected in a single measurement:
the model’s compression improvement over time. This measure summarizes
very simply the quality of the model itself and of the data distribution used
to train it. (We describe in a later chapter how we measure compression
improvements in our system.)

2.3 Two Learning Objectives and Metrics: External Rewards
& Compression Progress

We define two learning objectives for our system: achieving externally-provided
goals, and improving the world model. These objectives represent specific
motivational drives for the learner, and they provide us with corresponding
metrics for evaluating system performance.

3As Aristotle said in The Metaphysics, "All human beings by nature desire to know."

19

Objective 1: Achieve External Goals This objective is implemented
within the learner as a drive to acquire external rewards. As an evaluation
metric we can measure the learner’s external reward intake over time.

Objective 2: Improve World Model This objective is implemented
within the learner as a drive to acquire internal rewards – proportional to
model improvements, which includes finding good data plus compressing the
existing data. As an evaluation metric we can measure the learner’s internal
reward intake (or, equivalently, model improvements) over time.

Note that from the learner’s perspective, all types of rewards are beneficial,
so the ideal strategy is to achieve both objectives by maximizing total re-
ward intake. Also, note that achieving objective 2 indirectly helps to achieve
objective 1; a good world model helps achieve external rewards faster [61].

3 The Sapience Architecture

In this chapter we describe the high-level design of the Sapience architec-
ture. We begin with a discussion of the brain. Then we move on to the
architecture itself: its overall organization, major components, interconnec-
tions, and update process. Note that the entire architecture has already been
implemented. No aspect of the components being described here is merely
a hypothetical mechanism; every part has been instantiated with a concrete
software representation.

3.1 Brain Inspiration

The mammalian brain can be described at many levels of abstraction, from
the molecular level up to the highest systems level. Each of these types of de-
scription is useful in its own way. For example, Doya [15] divides the brain
into three major components (cerebellum, basal ganglia, cerebral cortex)
based on their assumed learning mechanisms, a very helpful way to gain in-
tuition into the functional roles of these brain regions. Similarly, Atallah et al
[6] describe a cognitive architecture including posterior cortex, hippocampus,
and basal ganglia/frontal cortex, based on differing computational trade-offs
in neural network models.

20

Figure 1: Illustrations of the brain showing cerebrospinal fibers and mid-
brain/hindbrain anatomy. From Gray’s Anatomy (public domain).

One interesting point is that the mammalian brain architecture appears to
follow roughly the same general organization across different species. The
main differences are numerical: higher mammals have larger cerebral cortices
with corresponding larger neural projections from cortex to basal ganglia,
cerebellum, etc. However, despite an overall difference in scale, we assume
that the overall functions remain similar across mammalian species. Thus,
similarly, we design our brain-inspired cognitive architecture to provide a
certain set of functionality but to be scalable in terms of computational
power (e.g., when executed on different computing hardware) – essentially
a speed vs. accuracy trade-off.

In this chapter it seems most useful to start with an informal, grossly sim-
plified description of the brain’s general operation. The biological details
of these brain structures are covered more thoroughly in later chapters; for
now, it is best to eschew the finer details and focus on overall function. The
following is an informal (possibly wrong, but hopefully useful) explanation
of global brain function:

• The basal ganglia is the “core,” a sort of mini brain within the brain.
If we had to choose one part to be the homunculus (in the “Cartesian
theater” sense – the “little man” within), the basal ganglia would be
it4. The basal ganglia essentially act as the decision making center:
based on the current state of things, which action should be chosen

4Of course this is not literally true, but the analogy is helpful.

21

next? It learns its action selection from trial-and-error based on re-
wards and punishment.

• The sensorimotor cortex is a “mental model” of the external world. It
learns from sensory data to build a compact/compressed representa-
tion of the underlying processes which generated the data. Other brain
regions use this as a general context representation: what is happening
in the world? Since it includes a model of motor space (i.e. motor vari-
ables like muscle length and tension), the motor regions can be used
by the basal ganglia as a set of potential action choices.

• The hippocampus stores snapshots of specific events (i.e. global corti-
cal states). When a similar event is later encountered, it can recall the
original cortical state, biasing the cortex to expect the same patterns
as before. This can operate sequentially, enabling storage and recall of
cortical “video,” i.e. successive frames of cortical states.

• The cerebellum learns to automate well-learned behaviors. The basal
ganglia is an information bottleneck: serial decisions routed through
it take a while. However, when the same decision is always chosen
in the same context, it is useful to store that decision elsewhere (in
the cerebellum), freeing the basal ganglia to focus on novel decisions.
Furthermore, it can operate in parallel, driving many motor/cognitive
actions at once, whereas the basal ganglia seems to be limited to serial
action selection.

• The prefrontal cortex acts as a set of working memory cells with read
and write capabilities, not unlike computer RAM. It provides to the
basal ganglia a set of memory actions (read/write), an extension of mo-
tor actions. Instead of choosing to perform a particular motor action
(e.g., initiating a gesture), the basal ganglia can choose to write some-
thing to working memory (e.g., the state of a particular sensorimotor
variable). Later, the basal ganglia can choose to read these contents
back out, allowing them to influence other brain regions, including the
sensorimotor cortex and the basal ganglia itself. The resulting basal
ganglia-prefrontal cortex subsystem acts something like a general pur-
pose digital computer with the ability to learn arbitrary programs to
increase rewards. Such a system provides the brain with powerful ca-
pabilities like planning – mental simulation of “what if” scenarios in
order to train the decision maker without direct interaction with the
real world.

22

• The brain as a whole works to increase positive reinforcements. The
basal ganglia is the central decision maker, and all other components
serve to help it make better decisions, whether by providing a more
informative summary of the world, by offloading frequent decisions,
training through mental simulation, etc.

3.2 High-Level Description

Our cognitive architecture includes five main components inspired by the
major structures of the mammalian brain, as shown in Figure 2. Each com-
ponent has a unique computational purpose. Here we introduce them with
a summary of their roles. More detailed descriptions are given in later chap-
ters.

Sensorimotor Belief Network This component is a probabilistic model
of the external world. It receives raw input data from the environment via
the body’s sensors, and it produces control signals to be applied to the en-
vironment via the body’s effectors. It learns to represent the discrete causes
of the data it receives (i.e. a causal model). In other words, given a sensory
pattern, what is the assumed cause of that pattern? This is accomplished by
employing Bayesian inference, organized in a hierarchical Bayesian network,
and with learning kernel mixture models. It has reciprocal connections with
the Sequential Memory, which provides sequential predictions/priors based
on past experience. It can be influenced by Working Memory, and its motor
representations can also be driven by the Serial Decision Maker and Parallel
Decision Memory. It provides a probabilistic “belief” representation to these
other components.

Sequential Memory This component learns to make sequential predic-
tions based on past experience. It watches the sequence of data coming from
the Sensorimotor Belief Network and can learn to store and recall these se-
quential patterns. This adds an element of temporal representation to the
system’s model of the world. It also sends a copy of its internal tempo-
ral representation to the Serial Decision Maker for making precise reward
predictions.

23

Sensorimotor Belief Network
sensory + motor cortex

Sequential
Memory

hippocampus

Working
Memory
prefrontal

cortex

Serial
Decision

Maker
basal ganglia

Parallel
Decision
Memory
cerebellum

sensory
inputs

motor outputs

Sapience Cognitive Architecture
high-level organization

© 2009 Tyler Streeter

external reinforcement

Figure 2: Primary components and connections of the Sapience architecture.
Each component is labeled based on its intended function, along with the
name of the corresponding brain region.

Serial Decision Maker This component performs two main functions:
learning context-dependent value/utility, and learning context-dependent
action selection. Based on the estimated state of the world (as represented
by the Sensorimotor Belief Network and the Sequential Memory’s temporal
representation), the Working Memory state, and the current external rein-
forcement, it learns to estimate the value of each situation. Concurrently,
it learns to select from a discrete set of actions, which includes both motor
actions (influencing the Sensorimotor Belief Network’s probabilistic repre-
sentation of motor space) and working memory actions (reading and writing
Working Memory contents). Its action choice is copied to the Parallel Deci-
sion Memory as a teacher signal for supervised learning.

24

Parallel Decision Memory This component automates well-learned de-
cisions. It constantly watches which actions (Serial Decision Maker outputs)
are chosen in each context (Sensorimotor Belief Network state and Working
Memory state). Over time it learns to assume control of the most often-
selected actions, freeing the Serial Decision Maker to focus on novel deci-
sions. Its parallel nature makes it capable of driving multiple motor and
working memory targets simultaneously.

Working Memory This component provides a discrete set of general
purpose memory cells. Each cell’s contents can be controlled by the Serial
Decision Maker, which is then influenced by the Working Memory contents
– a recurrent system, programmable via reinforcement learning. Working
Memory contents also influence the Sensorimotor Belief Network state and
provide an enhanced context for the Parallel Decision Memory.

3.3 Update Process

To remain as general as possible, all communication among components
and with the external world is represented with real-valued arrays. On each
update step we provide the system with new sensory data and external
reinforcements, perform internal processing, and access new motor control
signals. Internally, each update step performs component-specific process-
ing and inter-component communication. Here we detail the update process
from an external perspective (as seen from a program which uses the archi-
tecture) and internally within the architecture.

External Loop The following procedure illustrates the main update loop,
i.e. how the system should be updated iteratively within some program. This
assumes that the system is embodied, embedded within a simulated avatar
or real robot.

1. The body’s sensors capture an observation, the current state of the
environment as viewed through the sensors. This observation is repre-
sented as arrays of real-valued data.

2. External reinforcements are computed (e.g., as defined by the pro-
grammer).

25

3. The sensory observation and external reinforcements are provided to
the system.

4. The system performs internal processing, including learning from sen-
sory data, learning from reinforcements, and computing new motor
outputs.

5. The system’s new motor outputs are applied to the body.

6. The environment (the real world or a simulation) is allowed to advance
forward in time by some fixed interval.

7. Go to step 1.

As the system is expected to operate in real time, we assume a fixed update
interval. For example, assuming an update rate of 10 Hz, at regular intervals
of 100 ms the entire set of sensory inputs and external reinforcements are
sampled, all internal processing is performed, and all new motor outputs are
applied5.

Internal Processing The following procedure illustrates the system’s in-
ternal update procedure, which includes everything between providing new
incoming sensory inputs and reinforcements to applying new motor outputs:

1. Update the Sensorimotor Belief Network’s belief state:

(a) Propagate the latest sensory inputs (Bayesian likelihoods) through
the network.

(b) Apply extra influences (“virtual evidence” in Bayesian network
terminology) from Parallel Decision Memory (motor influence
only) and Working Memory.

5In practice there is, of course, the issue of limited processing power. What if the in-
ternal processing takes too long, and each update iteration takes longer than the desired
interval? In this case there are two options: find a faster computer, or decrease the system’s
processing requirements. For this reason our architecture includes a set of free parame-
ters, described in a later chapter, which provide a speed/accuracy trade-off. This allows
more accurate internal representations on faster computers, and lower accuracy (but faster
performance) on slower computers. To help determine the optimal degree of speed vs. ac-
curacy, implementations might include a built-in timing system which provides at runtime
an estimate of the time needed for internal processing. Furthermore, an implementation
might even run a benchmark test on start up and use the results to determine the optimal
accuracy settings based on the computer’s hardware limitations.

26

(c) Propagate the latest Sequential Memory predictions (Bayesian
priors) through the network.

(d) Compute a new set of “beliefs” about the world (Bayesian poste-
rior distribution).

(e) Train the kernel mixture models (conditional probability distri-
butions) from the sensory input data.

(f) Compute internal curiosity rewards based on prediction/compression
progress.

2. Update the Sequential Memory:

(a) Access the latest input pattern (the current state of the Sensori-
motor Belief Network multimodal root node).

(b) Train the predictor neural network, whose activity still represents
its last-step prediction of the current-step pattern, with the actual
current input pattern.

(c) Update the temporal trace array with the current input pattern.

(d) Update the predictor neural network to produce a prediction for
the next-step pattern (for the Sensorimotor Belief Network’s mul-
timodal root node prior).

3. Update the Serial Decision Maker:

(a) Use the current system state (from the Sensorimotor Belief Net-
work, Sequential Memory temporal pattern, and Working Mem-
ory contents) to update the value function and the policy (ac-
tion/decision).

(b) Train the value function based on the current reinforcements (ex-
ternal and internal).

(c) Use the value function to compute a training signal for the policy.

4. Update the Parallel Decision Memory:

(a) Use the current system state (from the Sensorimotor Belief Net-
work and Working Memory contents) to compute a set of parallel
actions (to influence Working Memory and the motor regions of
the Sensorimotor Belief Network).

27

(b) Use the latest decision from the Serial Decision Maker to compute
any errors in the current context-dependent outputs, and adapt
them as necessary.

5. Update the Working Memory:

(a) Use the current decisions (from the Serial Decision Maker and
the Parallel Decision Memory) to update the read/write states of
the memory cells.

(b) Cells with “read” enabled pull data from areas of the Sensorimo-
tor Belief Network.

(c) Cells with “write” enabled influence areas of the Sensorimotor
Belief Network.

4 Sensorimotor Belief Network

Here we describe the Sensorimotor Belief Network component of the Sapi-
ence architecture. This component is essentially an internal representation of
the external world – a world model. In designing this component we utilize
Bayesian inference as a unifying framework: at any given time this model
provides a probabilistic estimate of the state of things based on current sen-
sory data and prior experience. Furthermore, it learns continually from all
incoming sensory data by using an adaptable kernel mixture model.

In this chapter we begin by summarizing various key elements of the sensory
and motor regions of cerebral cortex. Then we describe our abstract Sensori-
motor Belief Network component, including its unifying theoretical principle
of Bayesian inference, an unsupervised learning kernel mixture model which
converts raw data arrays into probability distributions, the usage of a hierar-
chical Bayesian network to address the curse of dimensionality, methods for
computing prediction/compression progress for internal curiosity rewards, a
method to produce motor control signals, and a reflex system for bootstrap-
ping the learning of motor representations.

28

4.1 Inspiration from the Sensorimotor Cortex

In the mammalian brain the cerebral cortex6 is a 2-4 mm thick two-dimensional
sheet surrounding many other structures. As a general indicator of its im-
portance, its relative size has increased significantly in higher mammals,
corresponding to more complex perceptual abilities and behaviors.

Figure 3: Cerebral cortex illustrations. The left image exposes the insular
cortex located in the hidden interior walls of the two hemispheres. The cross
section on the right clearly shows a distinction between the gray matter (cell
bodies/processing) and white matter (neural fibers/communication). From
Gray’s Anatomy (public domain).

Here we look specifically at the sensorimotor cortex, by which we mean all
regions of cerebral cortex except the prefrontal area (considered separately
in a later chapter). A much more detailed account can be found elsewhere
[27, 1, 12]; we mainly focus on a few key aspects that influence our architec-
ture design. Briefly, we are interested in its large-scale connectivity (inputs
from all kinds of sensory sources, outputs to many other brain regions), its
columnar structure, and its apparently homogeneous, data source-agnostic
functionality.

Anatomy The sensorimotor cortex (occipital, parietal, temporal cortex
and parts of the frontal cortex) receives major inputs from a large variety
of sensory sources via the thalamus, including:

6The word “cortex” is Latin for “shell” or “bark.” The cerebral cortex is physically
shaped like a shell around the cerebral hemispheres.

29

• Visual: color, motion, depth

• Auditory: frequency-domain patterns

• Somatosensory (skin-related): pressure, vibration, temperature, pain

• Somatosensory (muscle-related, i.e. proprioception): muscle length, mus-
cle length changes/velocity, muscle tension

• Vestibular: head angle w.r.t. gravity, head acceleration vector

• Gustatory: flavors – chemical patterns on the tongue

• Olfactory7: scents – air born chemical patterns

There exist separate cortical regions for each data source. Typically, sensory
data coming from the thalamus reaches a primary sensory region of cortex,
where it is processed and sent to a secondary sensory region, tertiary region,
etc., until finally reaching the multimodal association regions in parietal and
temporal cortex. Alongside these “bottom-up” cortical connections (includ-
ing thalamocortical and corticocortical) there are “top-down” connections
from higher (e.g., multimodal) regions down towards lower primary regions.

In each of the sensory cortical regions it is common to find a topographic
arrangement of sensory representations (e.g., retinotopic maps of visual pat-
terns, somatotopic maps of skin surface patterns, tonotopic maps of audio
frequencies, etc.) This topographic property becomes less apparent (or per-
haps just harder to measure) in the higher-level multimodal regions. The
benefit of maintaining this topographic relationship is that computational
elements that deal with similar data are physically close to each other, en-
abling shared computation with short inter-element connections. This allows
sensory data from various arrays of sensors (e.g., skin, retina, cochlea) to
be mapped onto a two-dimensional sheet of cerebral cortex in a way that
maintains the local relationships of the data points.

Most sensorimotor cortical regions can be considered purely sensory, with no
direct influence on motor output signals sent to the muscles. However, the
primary motor cortex (intimately connected with somatosensory areas) does
possess such connections. Its layer V giant Betz cells form the “corticospinal”
(or pyramidal) tract (Figure 4), a set of output connections which travel from

7Interestingly, olfactory data is not routed through the thalamus. One possible expla-
nation is that the thalamus might act to maintain topographic organization during the
transmission of data from the sensory organs to the cortex. Olfactory patterns do not
seem to have a clear need for topographic representation.

30

motor cortex, down the spinal cord, and synapse directly on the muscles8.
This pathway is crucial for voluntary movement.

Figure 4: The corticospinal/pyramidal tract: motor output signals from the
motor cortex to the muscles. From Gray’s Anatomy (public domain).

The large-scale connectivity between the sensorimotor cortex and other
brain regions is described in many sources [27, 1] which we summarize here.
All regions of sensorimotor cortex (except primary visual and primary au-
ditory) project to the striatum region of the basal ganglia (see [48] Figure
17.4). The basal ganglia have output connections back to the motor-related
cortical regions (via the motor areas of the thalamus). Only the multimodal
sensorimotor cortex projects to the hippocampus, which sends outputs back
to the same multimodal areas (see [27] Figure 62-5). Nearly all areas of cere-
bral cortex project to the cerebellum’s mossy fiber system ([1] p. 206), and,
similar to the basal ganglia, the cerebellar nuclei send outputs back to the
motor-related cortical regions ([1] p. 211) and possibly nonmotor areas like

8The premotor and supplementary motor areas of frontal cortex also contribute signif-
icantly to this pathway.

31

prefrontal cortex ([1], see discussion of nonmotor functions on pp. 218-219).
Most sensorimotor areas have reciprocal connections with the prefrontal cor-
tex region.

Within all regions of sensorimotor cortex, there appears to be a common
columnar organization (reviewed in detail by Mountcastle [41]), resulting
from a radial migration of cells during cortical development. A cortical col-
umn (or hypercolumn or macrocolumn) is roughly 0.5 mm in diameter and
contains many minicolumns (or microcolumns) – on the order of 100 mini-
columns per column. The entire human cerebral cortex contains roughly
2,000,000 columns ([26], Table 2).

Function The sensorimotor cortex is generally involved in representing in-
formation related to various sensory and motor modalities. More specifically,
it appears that these representations are based on its columnar organization
(again, see [41]). Each column appears to represent a single “variable,” with
each minicolumn representing one possible value of that variable. For ex-
ample, in visual cortex the minicolumns appear to represent edges in visual
space [23], organized topographically (each neighboring minicolumn repre-
sents a visual edge of slightly different angle). Similar representations exist
for directions of visual motion (MT area of visual cortex), whisker deflec-
tion in rats (cortical “barrels” appear functionally equivalent to columns),
audio intensity organized along isofrequency bands in auditory cortex, so-
matotopic maps (skin pressure and vibration, muscle length and tension),
and also movement representations (direction vectors) in motor cortex [17].
In each case the sensorimotor cortex appears to be relatively agnostic to
the type of data provided. Thus, we might assume a homogeneous function:
similar circuitry across all sensory modalities implies a common operation
in all cortical regions.

Concerning motor pathways, what do the corticospinal motor outputs ac-
tually represent? It appears that the primary motor cortex and nearby so-
matosensory cortex send signals to and receive signals from the muscles and
tendons [48]. Signals coming from the muscles include the muscle length
(encoded by muscle spindles) and muscle tension/applied force (encoded by
golgi tendon organs). Signals going to the muscles include the “desired” mus-
cle length (encoded by alpha motor neurons) and “desired” muscle tension
(encoded by gamma motor neurons). Interestingly, the low-level feedback
circuits present between the spinal cord and muscle/tendon provide a func-
tional unit for each joint which can be viewed abstractly as a P controller

32

(simplified PD or PID controller). A P controller is a spring-like system
whose inputs include an equilibrium position (desired state/angle) and gain
(desired stiffness).

Primary somatosensory cortex (SI) contains four complete maps of the body
(Brodmann’s areas 3a, 3b, 1, and 2), each representing different types of
information. Area 3a, which processes proprioceptive sensory inputs, is ad-
jacent to the primary motor cortex (MI, Brodmann’s area 4), which sends
control signals to the muscles. The input and output data types in these
nearby cortical areas appear to encode similar types of information.

Computational Models Several computational models have been pro-
posed regarding cortical function. Most of them assume a hierarchical or-
ganization [49, 33, 16]. Some are based on the idea that unpredicted data
(prediction errors) propagate up the cortical hierarchy [49, 16]; only data
that cannot be modeled at one level is passed to the next, which presumably
has a wider view of things and should be more capable of modeling complex
patterns. Other models are based on a Bayesian inference framework [33],
treating the cerebral cortex as a large Bayesian network [44] which computes
“beliefs” (posterior distributions) about a large collection of variables.

4.2 Functional Abstraction

We assume that the sensorimotor cortex is organized as a hierarchy of func-
tional units (columns) which can be represented abstractly as a Bayesian
network9 of “belief nodes.” Each node in this network represents a variable
concerning some aspect of the sensory space, and the node contains a dis-
crete number of possible values/hypotheses (similar to minicolumns) for that
variable. The task of the entire network is to compute the posterior proba-
bility distribution at each node with the intent of representing an estimate
of the state of the world in a probabilistic way.

We use these general principles to design the Sensorimotor Belief Network
(Figure 5), a component of the Sapience architecture which acts as a prob-
abilistic representation of the external world (a world model). Each node

9We choose to focus on the Bayesian network representation, instead of prediction error
propagation, because of its formalism and because the prediction error approach appears
to provide the same types of messages between nodes as log-space Bayesian inference,
described in [62].

33

(inspired by the cortical column) learns a symbolic representation from its
given data. The nodes use kernel mixture models (inspired by cortical mini
columns) to convert raw sensory input data into probability distributions.
To break up the potentially huge, high-dimensional, multimodal sensory in-
put space, the network is structured as a hierarchy: the bottom-level nodes
model small patches of the input space, and the higher-level nodes model
the results of the lower-level nodes.

The major output array is a concatenation of all nodes’ posterior distribu-
tions – essentially a huge “belief vector.” This array is used by various other
components (e.g., as an input pattern for Sequential Memory predictions,
as a state representation for the Serial Decision Maker, etc.) Its contents
are more linearly separable (in a pattern recognition sense) than the input
patterns because the posterior vectors provide sparse patterns (the kernel
mixture model learning rules aim for minimal posterior entropy, i.e. very
few active units at a time). This property enables better learning results for
single-layer neural networks within other components that use the sensori-
motor belief state as inputs.

The motor areas of the sensorimotor cortex are almost identical to the purely
sensory areas except that they are able to control the variables they model
(e.g., joint angles and motor force output). Therefore, in the Sensorimotor
Belief Hierarchy the bottom layer of motor-related nodes sends prior (pre-
diction) signals out to the body as control signals for its effectors.

4.3 Bayesian Inference

The main unifying idea behind the Sensorimotor Belief Network is Bayesian
inference, as defined by Bayes’ theorem:

P (C|E) = P (C)P (E|C)
P (E) (1)

We have two variables: E is the “evidence” variable representing the input
data, and C is the “class” or “hypothesis” variable, a latent variable which
models the possible causes of the evidence. In general both E and C can
be discrete or continuous. We focus on the case where E is a continuous
vector variable and C is a discrete variable which takes one of a finite set of
possible values.

34

Sensorimotor Belief Network

sensory
inputs

motor
outputs

multimodal
likelihood

(to Sequential
Memory)

multimodal prior
(from Sequential

Memory)

pure sensory
modality

multimodal
root node

sensory+motor
modality

model improvement
progress (to

Serial Decision Maker)

measured
compression

improvements
(info gain)

full belief state
(to Working Memory,

Serial Decision Maker,
& Parallel Decision Memory

Working
Memory
influence

Serial Decision Maker
& Parallel Decision Memory
influence (motor nodes only)

extra likelihoods to all nodesposteriors from all nodes

Figure 5: The Sensorimotor Belief Network component, a hierarchical
Bayesian network representation of sensory and motor data. Sensory in-
puts are provided for all modalities, but only motor-capable modalities can
send motor control signals back out (see right side of diagram). Large, high-
dimensional input arrays are broken into smaller arrays (to address the
machine learning “curse of dimensionality”) which are then processed by
multiple Bayesian nodes. The hierarchical arrangement converges onto a sin-
gle multimodal root node. All inter-node connections are bidirectional: each
node receives likelihood messages from its children and a prior message from
its parent. The root node treats the external Sequential Memory component
as its parent node. Influences from external components are applied as ex-
tra likelihood messages (“virtual evidence”), a standard Bayesian network
procedure. The full state of beliefs (concatenation of all nodes’ posteriors)
is sent out to various components. Compression progress is also measured
and sent to the Serial Decision Maker for internal curiosity rewards.

35

The general idea behind the theorem is that of combining new data with
prior predictions to produce a better estimate of the variable in question.
P (C) is the prior distribution over the class variable – before seeing the data,
what is the probability of each hypothesis being the case? P (C|E) is the
posterior distribution over the class variable – after seeing the data, what is
the probability of each hypothesis being the case? P (E|C) is the conditional
probability of seeing the evidence given a hypothesis – if a specific hypothesis
is the true cause, what is the probability of seeing the current data? (P (E|C)
is also known as the “likelihood” function which can be written L(C|E).)
P (E) is the probability of seeing the evidence, which is difficult to compute
accurately but simply acts as a normalizing constant and can be ignored.
We refer to the three main terms as the posterior, prior, and likelihood.
Informally, we may restate Bayes’ theorem as:

posterior ∝ prior × likelihood (2)

Before we can apply Bayes’ theorem to a data source, however, we need
some kind of explicit representation of the hypothesis variable – a discrete
set of hypotheses. However, in real world problems we are usually only given
samples from the evidence variable in the form of real-valued vectors. The
problem is thus learning to represent the hypotheses solely from the data
samples, which allows conversion from raw data into probabilities. Such a
conversion is a critical component of any embodied, Bayesian inference-based
intelligent system operating in the real world. Fortunately, we can learn this
representation automatically from the data in an unsupervised manner.

4.4 Generating Symbols via Unsupervised Learning

Any embodied intelligent agent must deal with raw sensory data in the form
of real-valued vector quantities. The primary challenge is converting these
data vectors into some “useful” internal symbolic representation. Useful for
what? Generally, the symbolic representation should be useful for making de-
cisions (e.g., in a reinforcement learning framework). We want it to represent
the external world in the most informative way, thus enabling well-informed
decisions. Fortunately, the notion of information transfer between numeric
representations is well-defined in terms of probability theory.

We assume that the external world contains a discrete set of data sources, or
causes. As these causes interact with their surroundings, they generate pat-

36

terns of energy (electromagnetic, acoustic, etc.) with are then transduced
through the sensory apparatus (e.g., a camera), resulting in a particular
data sample (an array of real values). The learning system then converts
these data samples into an internal symbolic representation, where the sym-
bols represent hypotheses about which external cause produced the sensed
sample. (The internal symbols can be viewed as hypotheses, classes, or cat-
egories.)

The learning system faces three issues: 1) determining the number of causes
in the world to represent internally, 2) determining the most probable cause
for each sensory data pattern, and 3) adapting the internal symbols to rep-
resent the causes better. Here we handle the first issue simply by assuming
that the number of causes in the world will often be very large – more than
we are able to model with a symbolic representation. For this reason we usu-
ally choose to use the maximum possible number of hypotheses to represent
given limited computing resources10. (In the worst case some of the internal
symbols will merely be redundant.) The second issue requires an internal
probabilistic representation of the external causes, described next. The third
issue, described later, involves a learning process which adapts this symbolic
representation according to some learning criterion.

4.4.1 Symbolic Representation

Before we discuss the learning process, we start with the hypothesis rep-
resentation. We use a kernel mixture model of the data. Kernel mixture
models are comprised of a discrete number of parametric kernel functions
which can be mixed together to model an arbitrary distribution. (They are
non-parametric models in the sense that they model distributions without
any clear parametric form; they can also be called semi-parametric since
they are built from a set of simpler parametric models.) Each kernel repre-
sents a single class/hypothesis of a multi-valued variable within the Bayesian
inference framework. These hypotheses are assumed to be exhaustive and
mutually exclusive, which is required for Bayesian inference ([44], Section
2.1.5).

We use N kernels total. Our kernel function of choice is the d-dimensional
spherically-symmetric Gaussian kernel:

10We might find a parallel principle in the mammalian brain: the cerebral cortex is as
large as possible given certain constraints (metabolic requirements, birth canal vs. head
size, etc.)

37

p(E = e|C = ci) = 1(
2πσ2

i

) d
2

exp
(
−‖e−wi‖2

2σ2

)
(3)

for d-dimensional evidence vector e and kernel/class ci with d-dimensional
center vector wi and standard deviation σi. Here we have defined the ker-
nel function as a conditional density, or likelihood function, p (E|C) (using
lower-case p to represent a continuous probability density, not a discrete
probability mass function). This likelihood function can be plugged into
Bayes’ theorem:

P (C = ci|E = e) = P (C) p(E = e|C = ci)
p(E = e) (4)

This computes the posterior distribution over the hypotheses given the new
evidence e. The prior class distribution P (C) represents the prior probability
(before seeing a data/evidence sample) that each hypothesis was truly the
cause of the evidence/sample. p(E = e) is the data density function, the
probability density at any given evidence vector e. (This can be computed
as a weighted mixture of the likelihood functions, but we will ignore it here
because it only serves to normalize the products in the numerator to unit
sum.)

At this point we have defined a particular symbolic representation, a kernel
mixture model, which may be utilized in a probabilistic framework to con-
vert raw data samples into a discrete probability distribution (the posterior
distribution over hypotheses) (Figure 6). Now the difficulty is to adapt the
kernel centers and standard deviations based on the data.

4.4.2 Data-driven Symbol Learning Based on Infomax

Earlier we stated that an ideal symbolic representation is one that is maxi-
mally informative about the raw data. Now that we have defined the form
of our representation, we must determine how the symbols will adapt to
fit the data. One popular technique for doing so is the principle of maxi-
mum information preservation (commonly called “infomax”) [36]. The goal
of infomax-based learning is to produce a representation of the data such
that the mutual information between the input data variable (E in our case)
and the output/representation variable (C in our case) is maximized. When

38

d-dimensional
input sample

(0.1, 0.8, -0.3)

(0, 0, 0, 0, 0, 0, 0, 0.4, 0.6, 0, 0, 0)
N-dimensional probability vector

Figure 6: An adaptable kernel mixture model learns to represent the underly-
ing data distribution. Here, d=3 and N is the number of kernels/hypotheses
in the model. For each incoming data sample we can compute a set of com-
ponent density/likelihood values, one for each kernel (see text). Then, given
some prior distribution, we can convert the likelihoods to posterior proba-
bilities, resulting in a discrete probability distribution (PMF) over the hy-
potheses. Essentially, this model learns a probabilistic symbolic representa-
tion from an arbitrary set of data samples.

39

this goal is achieved, we can assume that the learned representation is maxi-
mally informative, i.e. that the encoding processes loses as little information
as possible.

In our case the mutual information between the evidence (continuous vector
variable) and class (discrete variable) is:

I(E;C) = H(C)−H(C|E) (5)

That is, the mutual information between E and C equals the entropy of C
before seeing E minus the entropy of C after seeing E. Mutual information
is symmetric (I(E;C) = I(C;E)) and always non-negative.

The Kullback-Leibler divergence between two probability distributions P
and Q is defined as:

DKL(P‖Q) =
∑
i

P (i) log P (i)
Q(i) (6)

If we replace the distribution P with the posterior P (C|E) and Q with the
prior P (C), then the mutual information between E and C can be defined
in terms of Kullback-Leibler (KL) divergence as follows:

I(E;C) = EE{DKL(P (C|E)‖P (C))} (7)

When viewed this way, the mutual information between E and C equals the
expected value of the KL divergence between the prior and posterior. The
KL divergence between these distributions represents the relative entropy
between them, or the information gain after seeing a single sample from E.
Thus, I(E;C) is the expected information gain over all data samples in E.

As the goal of infomax-based learning is to maximize I(C;E), it tries to
maximize the expected information gain. Informally, it wants the prior and
posterior distributions to be maximally different (as measured by KL di-
vergence) on average, which is true when the prior distribution P (C) is
uniform and the posterior distribution P (C|E) is totally concentrated on
one value (a degenerate PMF). If this learning goal is achieved, each data
sample provides maximal reduction in uncertainty/entropy concerning which
class/hypothesis represents its true cause; the system receives maximal in-
formation gain per data sample.

40

In summary, by adopting the infomax learning principle, we focus on learning
rules which do both of the following:

1. Generate a maximum entropy representation of C before seeing E –
H(C) – which corresponds to a uniform prior P (C). For any given
data sample, each class is equally probable.

2. Generate a minimum entropy representation of C after seeing E –
H(C|E) – which corresponds to a degenerate posterior P (C|E). After
seeing any given data sample, only one class is probable (minimal
overlap).

In practice, these goals are difficult to achieve perfectly, but they still serve
as an ideal learning target. Next we describe one specific learning algorithm
which provides an approximation to the infomax approach.

4.5 A Robust Learning Kernel Mixture Model Algorithm

The kMER algorithm (kernel-based Maximum Entropy learning Rule), in-
vented by Marc Van Hulle, is a recent method based the principle of equiprob-
abilistic kernel activation [24]. Equiprobabilism is the idea that each unit in
a neural system should have equal probability of being active for any given
data sample. Thus, equiprobabilism is a sort of maximum entropy goal.
kMER implements equiprobabilistic learning by adapting binary thresholds
on a set of neurons so that each neuron is activated by the same fraction
of data samples. It essentially “tiles” the data space with a set of spheres,
each containing the same number of samples. Then the resulting receptive
fields can be treated as Gaussian kernels in order to compute probability
densities/likelihoods.

Learning Rule Assume the input data space is d-dimensional. Each of N
kernels Ki has both a d-dimensional center/weight vector wi and a receptive
field radius σi. For each kernelKi there exists a “code membership function,”
which specifies whether the current input vector v is within its receptive field
(whether it is “active”):

1i(v) =
{

1 if ‖v−wi‖ ≤ σi
0 if ‖v−wi‖ > σi

(8)

41

There also exists a “fuzzy code membership function”:

Ξi(v) = 1i(v)∑N
k=1 1k(v)

(9)

which is essentially a normalized version of the code membership (0 <
Ξi(v) <1 and

∑
i Ξi(v) = 1).

kMER’s kernels can be given a topographic influence in order to produce
a topographic map, a relationship between the d-dimensional input space
an a (usually 1- or 2-dimensional) “lattice space.” This is achieved through
the use of a set of lattice coordinates (i.e. in addition to each kernels d-
dimensional center wi, it also has a 1- or 2-dimensional lattice position ri)
and a neighborhood function (just like the classic SOM algorithm [28]), for
example the Gaussian function:

Λ(i, j, σΛ) = exp
(
−‖ri − rj‖

2σ2
Λ

)
(10)

where σΛ is the neighborhood range, which is usually set large initially,
encompassing the entire lattice, and allowed to shrink to zero over time.
The neighborhood function produces, for each pair of kernels, a value within
[0, 1] which represents the degree of closeness in lattice space. This function
is applied in the center learning rule (see below) by “sharing” a kernel’s
activation with its neighbors in the lattice, ensuring that input samples
which are nearby in the input space activate kernels which are nearby in
lattice space. Figure 7 shows an example of topographic map formation.
One major benefit of this topographic influence is much better initialization
of kernel centers (e.g., along the directions of maximum variance), which
tends to provide more consistent results at convergence.

kMER’s incremental/on-line learning rules are as follows. For each input
sample v, update the center vectors wi:

∆wi = η
∑
j

Λ(i, j, σΛ)Ξj(v)Sgn(v−wi) (11)

where η is the learning rate and Sgn(.) is the (component-wise) signum
function. The sum for each kernel i is taken over all N kernels j, a O(N2)
computation. However, [24] (section 5.2.8) also provides an optimized version
with much lower time complexity, which we use in our system.

42

Figure 7: A sequence of images showing the development of a topographic
map from 3-dimensional data space (samples from the hand surface) to a
2-dimensional lattice. Points that are nearby on the hand surface are nearby
in the lattice. (Biologically speaking, nearby points on the skin are repre-
sented in adjacent locations within the 2-dimensional cortical sheet.) The
final image shows the lattice alone without the hand data source.

Also for each input sample v, update the receptive field radii σi:

∆σi =
{
−η if 1i(v) =1
η ρ
N−ρ if 1i(v) =0

(12)

where ρ is a scale factor that determines how many kernels will be active at
once. At convergence, any given input sample will activate (fall within the
receptive field of) ρ kernels. In other words, the probability that each kernel
is activated by any given sample will be ρ

N . If ρ = 1, only one kernel will be
active on average.

Essentially, each kernel center is moved towards the input sample in pro-
portion to its fuzzy code membership Ξi. Since the fuzzy code membership
values are normalized to unit sum, the active kernel centers must “share” the
update strength. Each receptive field is increased in size by a small amount if
the input sample is outside its radius but decreased by a large amount if the
sample is within its radius. This leads to equal sharing of the data samples
among kernels. (Intuitively, the kernels’ receptive fields and data samples
can be imagined as a set of funnels facing upwards, with marbles dropped
from random locations above. The funnels try to move around, grow, and
shrink in order to ensure that each one gets the same number of marbles.)

43

Figure 8: A kernel mixture model learning to represent a 1-dimensional
uniform distribution. Both the actual data density and the learned density
estimate are shown. The vertical bars represent the kernel centers.

kMER’s learning rules are based on robust median statistics, so the resulting
kernel centers converge on the median11 of the input samples within its
receptive field. This is accomplished through the use of constant direction
factors (ignoring magnitude) in the incremental rules (note the use of Sgn(.)
in the center update rule).

Probabilistic Interpretation The learning rules above treat the kernel
receptive fields as hyperspheres with radius σi. However, as described in [24]
(section 5.4.5), it is possible to interpret these radii also as the standard
deviations of hyperspherical d-dimensional Gaussian kernels (Equation 3).
This produces a kernel mixture model, an estimate of the probability density
function underlying the data. See Figures 8, 9, 10, and 11 for example results
of applying kMER to various simple data distributions.

This completes the link between the kMER unsupervised learning rule and
the probabilistic Bayesian framework. kMER learns to divide the input data
samples evenly among a discrete number of receptive fields. We use the re-
sulting receptive fields to compute Gaussian kernel functions which represent
probability densities. Finally, we use the density estimates as likelihoods in
Bayes’ theorem.

Note that the prior distribution over the class variable, P (C), is still unde-
fined. Since we use a kernel to represent each possible class value/hypothesis,
the prior probability P (C = ci) corresponds to the prior probability of any
given data sample being caused by kernel i. Fortunately, rather than having
to estimate these priors from the data (a relatively difficult problem), the

11As Van Hulle notes in [24], there is no unique definition of median for d > 1, so the
median is defined per dimension: a given kernel receptive field contains equal numbers of
input samples on either side of its center within each dimension (i.e. equal samples within
wij − σi and wij + σi for kernel i and input dimension j).

44

Figure 9: A kernel mixture model learning to represent a 1-dimensional dis-
tribution of two overlapping Gaussian sources. Both the actual data density
and the learned density estimate are shown. The vertical bars represent the
kernel centers.

Figure 10: A kernel mixture model learning to represent a 2-dimensional dis-
tribution of two overlapping Gaussian sources. Both the actual data density
and the learned density estimate are shown. The vertical bars represent the
kernel centers.

45

Figure 11: Visualization of the kernels’ “probability surfaces,” the probabil-
ity that a data sample at a given location was “generated” by that kernel.

kMER learning rule automatically learns towards equal priors by design12.
In general, assuming no other previous knowledge about the situation (given
in the form of a prior distribution), we can assume that P (C) is nearly uni-
form.

Recall from earlier the desire to find an infomax-based learning rule for our
symbolic representation. kMER can be interpreted as an approximate in-
fomax learning rule. Its equiprobabilistic basis achieves an (approximately)
uniform prior distribution, so the random variable C has (approximately)
maximum entropy. By setting the parameter ρ in Equation 12 so that the
expected number of active kernels is one, the posterior distribution is degen-
erate (concentrated on one value), so that the random variable P (C|E) has
(approximately) minimum entropy. These two aspects of the learning rule
make it useful as an approximation of infomax, generating a representation
of C which extracts very high information content from each data sample.

Summary kMER has many attractive properties:

• kMER’s focus on median-based learning endows it with a quality of
robustness, making it much less affected by outliers in the input data

12However, note that the equiprobabilism principle is a heuristic for achieving a perfect
equal prior, maximum entropy density model (Van Hulle, personal communication, 2009).
Even though the receptive fields in the learning rule contain equal numbers of data samples,
the actual prior probabilities in the kernel density estimate will not be equal in general.

46

compared to mean-based learning rules. In comparison, the weight
learning rule in the SOM algorithm [28], which looks very similar to the
kMER rule, does not use Sgn(.) but instead uses the full direction and
magnitude of the error vector between the input and weight vectors;
its neurons learn toward the mean of the data samples that activate
them.

• It allows topographic map formation. The use of a kernel lattice and
neighborhood function constrain the learned kernel centers to a topo-
graphic map between the input and lattice space.

• kMER’s binary spherical receptive fields make it robust in high-dimensional
spaces. If we simply used spherical Gaussian kernels directly in the
learning rules (i.e. if activation/code membership were based on the
Gaussian function), the results get worse as d increases because most
of the Gaussian volume shifts farther towards its tails13. This presents
significant numerical problems because computing the d-dimensional
Gaussian function is much less accurate in its extreme tails than near
its center. In contrast, kMER’s binary spherical receptive fields cir-
cumvent this issue. Even though high-dimensional hyperspheres also
contain most of their volume in a thin shell near their radii, it is much
simpler to compute stably whether a data sample is inside or out-
side of a sphere. This feature helps kMER scale better to high dimen-
sions in comparison with other common algorithms, like the maximum
likelihood-based expectation-maximization (EM) algorithm [14].

• The underlying principle of equiprobabilism ensures that each kernel
takes an equal role in modeling the data. It reliably produces a weight
density proportional to the input data density (a “faithful representa-
tion”), whereas the SOM algorithm [28] does not (for a 1-dimensional
lattice, SOM’s weight density p(wi) is proportional to p(v)

2
3 , assum-

ing infinite neurons) ([24], Section 4.1). A related problem is that the
SOM algorithm often produces “dead” units, wasted neurons which
are initialized outside the data distribution and never get used.

• kMER’s learning rules can be interpreted as an approximate infomax
learning algorithm, and its learned kernel parameters can be used
to compute probability density estimates/likelihoods, a probabilistic
symbolic representation of the input data.

13For example, a 1-dimensional Gaussian contains 6% of its volume beyond 2σ, compared
to 15% in 2 dimensions, 27% in 3 dimensions, etc.

47

The next section discusses how we may combine unsupervised learning with
Bayesian inference in a way that scales to high-dimensional data spaces.

4.6 Hierarchical Empirical Bayesian Network

At this point we might assume that the combination of an unsupervised
learning algorithm (like kMER) embedded within a probabilistic framework
(Bayesian inference) is enough to provide a good representation of any sen-
sory data. However, one practical issue remains concerning high-dimensional
data: the “curse of dimensionality,” a very general problem facing many ma-
chine learning algorithms.

Any kind of adaptable representation of a data space requires that the data
distribution is sampled at a certain resolution. If the distance between sam-
ples is too great, some features in that intervening space will be missed.
The “curse” is that as the dimensionality d of the data space increases, the
number of data samples needed to fill its volume with a fixed sampling res-
olution increases exponentially. As an example, a learning algorithm might
need 100 samples from a 1-dimensional space, 10,000 from a 2-dimensional
space, 1,000,000 from a 3-dimensional space... However, it is almost always
the case that the required number of samples is simply not available; in-
stead, the sampling resolution suffers as d increases. There is simply too
much space between the available samples, and learning an accurate repre-
sentation becomes increasingly difficult.

We choose to handle this problem by maintaining a constant value for d
by breaking up high-dimensional data spaces into several spaces of smaller
dimensionality. For example, a 100 x 100 pixel image space (10,000 dimen-
sions) can be split into 200 separate 50-dimensional spaces. Each of these
smaller spaces can then be modeled with its own kernel mixture model. How
then can we combine the results of these separate models? We treat each one
as a node in a Bayesian network, organized hierarchically so that the results
of many nodes, each focused on a small patch of the data space, converge
onto a single root node which summarizes the entire space.

A Bayesian network is a graphical model containing a set of nodes, each
representing a random variable, and a set of connections between nodes
which define relationships between the nodes as conditional probabilities.
It acts as a distributed representation of Bayes’ theorem, where each node
computes probabilities regarding a small part of the world. Within each

48

node, “likelihood messages” (new data/evidence) are received from child
nodes, “prior messages” (prior distributions) are received from parent nodes,
and the two messages are combined to compute the posterior distribution
(“beliefs”) for the node’s variable, as in Equation 2.

Figure 12 shows a single node with two children and one parent. It contains a
kernel mixture model which learns the conditional probability distribution,
a mapping between the node’s values (it’s “belief space”) and the child’s
values. The node’s likelihood message is computed as a combination of the
likelihood messages provided by the children, where the child likelihoods are
concatenated and provided as input data to the node’s kernel mixture model.
Essentially, the node learns to model the belief space of its children. Priors
to be sent to the children can then be computed as a weighted mixture of
the node’s kernel center vectors (weighted by the node’s own prior from its
parent).

Bayesian networks assume statistical independence among all variables that
are not connected. This means that each node is assumed to represent a
piece of the world which is causally unrelated to all other nodes except for
its parent or child nodes (assuming a hierarchical network). We address this
requirement by breaking up the input data space (assumed to be presented
topographically) into small patches, where neighboring nodes are assumed to
be modeling different causes simply because their data comes from physically
separate sensors. This does not imply total statistical independence, but we
assume that it is good enough for most purposes.

Why is it important for the data to be presented topographically? As de-
scribed earlier, a topographic map is a transformation from one space to
another (possibly of different dimensionality), where two points that are
similar in one space are similar in the other space. Each patch of the full
sensory array should represent a non-overlapping receptive field, the output
of sensors which are nearby in physical space, so that a node which models
that data can find statistical regularities in its data samples. (For example,
in images sampled from a digital camera, it is much easier to find patterns in
nearby pixels than from a collection of pixels chosen from random locations
within the image.) Topographic representations make it easier to divide the
data by their spatial arrangement into statistically independent variables, a
crucial ingredient for Bayesian networks.

Biologically speaking, if we assume that each cortical column is “trying” to
represent a set of input data different from its neighboring columns (i.e. rep-
resenting non-overlapping receptive fields), then the columns should learn

49

to represent variables that are conditionally independent, given their com-
mon parent column, which is exactly what is required in a Bayesian net-
work. Furthermore, if we assuming each column’s set of minicolumns learns
based on an infomax-like principle so that each minicolumn represents a
non-redundant feature, then the minicolumns will be statistically indepen-
dent of each other, which is also required for Bayesian network node (i.e.
each of a node’s values must be mutually exclusive).

To update our hierarchical network, we use Pearl’s Bayesian Belief Propaga-
tion (BBP) algorithm for tree-structured networks ([44] Section 4.2). BBP
is a standard Bayesian network updating algorithm with the following prop-
erties:

• Efficient storage and processing requirements: O(n2 + mn + 2n) real
values and O(2n2 +mn+ 2n) multiplications per node for a tree with
m children per parent and n values per node.

• Network updates can be performed synchronously or asynchronously,
enabling parallelized implementations for multi-processor computers.

• Any new information (new data/likelihood messages from below or
new root prior messages from above) propagates through the network
in a single pass, with the required number of updates proportional to
the network’s diameter.

If the likelihood messages for the bottom-level nodes come from the raw
data, what provides the prior message for the root node? This question is
largely unanswered in [44], which simply calls the root prior “the background
knowledge remaining unexplicated.” In other words, it must be estimated
somehow.

One possibility is to use a simple naive prior, where the root node’s prior
distribution equals its previous-step posterior distribution14. By setting the
root’s prior probabilities based on the previous state of the world, this
scheme implicitly assumes, naively, that things never change. However, given
no other knowledge, this isn’t the worst strategy. It is probably better than
simply using a uniform prior distribution since it captures some prior knowl-
edge about the world.

What would be the ideal source of root node priors? It would be a perfect
predictor which, based on current beliefs, perfectly predicts the next-step

14Note that this is only allowed for the root node. All other nodes must get their priors
solely from their parent nodes. (See [44] p. 164.)

50

kernel
mixture
model

"r
ec

o
g

n
it

io
n

 m
o

d
el

"

posteriors (beliefs)
used for decision-making

likelihoods
(new data)
to parent

priors
(predictions)
from parent

likelihoods
(new data)

from child A

likelihoods
(new data)

from child B

priors
(predictions)

to child A

priors
(predictions)

to child B

"g
en

erative m
o

d
el"

Figure 12: A single node in the belief network representing some variable.
This node combines data from multiple child nodes with predictions from
a parent node. The result is a set of beliefs about the state of its variable
which can be used elsewhere for making decisions.

51

distribution. (This is in contrast to the naive prior which would predict that
things stay the same as the current state.) This might not be possible in
practice, but it should be possible to improve over the naive prior. We can
use a sequential prediction generator for this role which learns from experi-
ence. This is precisely the purpose of the hippocampus-inspired Sequential
Memory component described later.

4.7 Measuring Model Improvements

Earlier we defined the learning objectives for our system, one of which was
improving the world model. How should model improvements be measured?
Here we define two possible methods: data prediction error and information
gain. The choice of which method to use will be decided after running ex-
periments. It may become apparent that one method is more useful or even
that they both represent the same measurement in different forms.

4.7.1 Data Prediction Error

One way to measure the model’s prediction performance is the mean squared
prediction error of its sensory data. At each instant, it is possible to com-
pare the actual incoming sensory data with predictions generated by the
Bayesian network. (Sensory predictions are simply the bottom-level priors
sent out from the nodes nearest to the raw sensory data. Biologically, this
would probably occur in the thalamus.) The mean squared error is then
computed from the component-wise errors between these two arrays. This
measure summarizes many aspects of the model’s prediction performance,
including simple reconstruction errors due to compression (e.g., looking at
an unchanging visual scene) and sequential prediction errors (e.g., predicting
the path of a moving object).

4.7.2 Information Gain

Within the Bayesian inference framework, we can measure the information
gain provided by a data sample, a form of model improvement. Naturally,
this measurement is provided as the KL divergence (Equation 6) between
the prior and posterior distributions. This measure summarizes the informa-
tion gained from seeing new data (likelihood array). This general approach

52

has been used by other researchers for experimental design [35], to moti-
vate “reinforcement driven information acquisition” (optimal sequences of
experiments) within learning systems [55], and to model human attention
[25]. In the Sensorimotor Belief Network we can measure information gain
at the root node (i.e. the difference between the multimodal node’s prior
and posterior) or averaged over all nodes.

Instead of using KL divergence, we might instead use Jensen-Shannon (JS)
divergence [34]. The JS divergence between two probability distributions P
and Q (assuming equal weighting) is defined as:

DJS(P‖Q) = 1
2DKL(P‖M) + 1

2DKL(Q‖M) (13)

M = 1
2(P +Q) (14)

Intuitively, the JS divergence of two distributions is the mean KL divergence
from the mean distribution. Similar to the mutual information between a
data and class variable, JS divergence is the expected KL divergence be-
tween posterior and prior. It has several benefits over KL divergence: it is
bounded to a finite range [0,− log(1

2)] (arbitrary base), it is well-defined for
all combinations of zero and non-zero probability values, it is the square
root of a true metric, and it is symmetric: DJS(P‖Q) = DJS(Q‖P).

4.7.3 Curiosity Rewards

We use the measured model improvements to motivate exploratory behavior.
The measured improvements are sent to the Serial Decision Maker as internal
curiosity rewards, reinforcing situations and actions that lead to further
model improvements.

The combination of a powerful world model with a curiosity drive enables
an interesting synergy. It enables a feedback loop where the entity is driven
to explore new situations, exploration improves the entity’s world model,
and the entity becomes curious about even more complex situations15. The
learner is continually driven to satisfy its curiosity in increasingly sophisti-
cated ways.

15Interestingly, mammals with larger relative brain sizes (usually corresponding to larger
cerebral cortices) tend to exhibit more advanced play behavior ([11], Table 8.1).

53

4.8 Producing Motor Outputs

So far we have discussed how our system processes incoming sensory data,
but how does it generate outgoing motor control signals? To answer this
question, we again look for inspiration from biology. Based on the biological
evidence reviewed at the beginning of this chapter, we assume that any
motor-capable region of the Sensorimotor Belief Network should sense and
control similar variables. For example, if a motor-related belief node receives
inputs regarding a joint angle from a robotic arm, it should also send out a
control signal encoding the desired joint angle. If another node receives the
current force output from a servo motor, it should send out the desired force
output. This scheme allows the motor belief nodes to learn a representation
of motor space which is also used directly as a basis for control.

4.9 Bootstrapped Motor Development via Reflexes

In order to learn a useful representation of motor space, it is important
that the motor-related variables are sampled from a large range of possi-
ble values. If an embodied system (e.g., a humanoid robot) remains totally
stationary, its sample distribution for all motor-related variables (like joint
angles) will not be representative of the full motor space. This situation is
highly detrimental to the decision making process (described in a later chap-
ter) which must choose, at each instant, from among a set of learned motor
gestures. If all motor configurations have, through learning, converged to
a single gesture, the decision making process will become effectively stuck,
always choosing from a set of equivalent motor configurations.

During the initial phase of development we help bootstrap the motor learn-
ing process with a set of built-in reflexes. In general we do not know the
ideal set of reflexes for any given body, so we simply use a neural network
with random connection weights mapping sensory inputs directly to mo-
tor outputs16. This reflex network takes full control of the body initially,
pushing the effectors through their full range of motion. Over time we ramp
down the effect of the reflexes, simultaneously ramping up the effects of the
decision making system (described later). The idea is that an embodied sys-
tem will begin its lifetime fully controlled by its reflexes and gradually gain

16For a given body, it might be better to use artificial evolution to evolve a good set
of reflexes over the course of several generations. This might speed up the initial learning
process. However, we assume that this is not strictly necessary in general.

54

the ability to make voluntary actions. This scheme has biological support:
cat motor cortex does not initially influence spinal motoneuron activity (i.e.
the corticospinal/pyramidal tract), only gradually becoming active over the
course of several weeks after birth [10].

We now speculate briefly about bootstrapped motor development animals.
It seems that a general distinction exists concerning two sources of motor
control: reflex-based (genetically-determined, including central pattern gen-
erators, etc.) vs. voluntary control. Insects appear to be solely driven by
reflex-like circuits with little or no adaptable voluntary control. Amphibians
and reptiles heavily depend on reflex control but are also able to switch vol-
untarily between various automatic control systems. Mammals often begin
life under full reflex control but learn to increase voluntary control after
some time. The initial set of behaviors is often crucial within the expected
environment after birth (for example, gazelles are able to stand and run al-
most immediately – there is no time to learn from scratch in the presence of
predators), but voluntary behaviors are learned eventually. Humans, as an
extreme example, require a relatively simple initial set of reflexes at birth
because, presumably, our parents will protect and provide for us as we de-
velop voluntary control. Perhaps many of the reflexes we have at birth are
merely for bootstrapping voluntary motor development; seemingly random
flailing drives our effectors through their full range, training our motor cor-
tex to represent the widest range of configurations. Maybe the parental safe
haven is necessary for such advanced learning of voluntary control; more
precisely, it could be that the degree of voluntary control within a species is
proportional to the amount of parental support available after birth.

5 Sequential Memory

After describing a hierarchical network for Bayesian inference, there is re-
mains the outstanding question of where the root node’s priors are produced.
Indeed, the source of priors for Bayesian inference is a tricky issue in general.
We propose to approach this problem by taking inspiration from the brain’s
hippocampus. Its connectivity indicates an intimate relationship with the
cerebral cortex, possessing reciprocal connections with the multimodal cor-
tical regions17.

17Interestingly, various comparative studies with vertebrate brains hint that most of the
cerebral cortex (6-layered “neocortex/isocortex”) essentially appeared as an outgrowth of
the evolutionarily older olfactory/hippocampal region (3-layered “allocortex”) [12].

55

Functionally, this component in our architecture provides prior knowledge
about what the Sensorimotor Belief Network should expect to see next. This
includes sequential prediction capabilities, where past learned patterns can
be recalled sequentially in order to bias expectations about future sensory
data. For these reasons we call this component the Sequential Memory.

5.1 Inspiration from the Hippocampus

Here we look at the structure and function of the hippocampus18 region
in the brain. Its patterns of input and output connectivity provide some
direction in designing the Sequential Memory component.

Figure 13: The hippocampus shown in isolation, hidden within the cerebral
hemispheres, and in relation to the midbrain. From Gray’s Anatomy (public
domain).

Anatomy The hippocampus receives major inputs from and sends major
outputs back to the entorhinal cortex, a region between the hippocampus
and the multimodal areas of sensorimotor cortex. It also has a major output
pathway called the fornix (from areas CA1 and CA3) which projects to

18The word hippocampus is Latin for “seahorse” due to its shape.

56

various external brain regions including the striatum of the basal ganglia (see
[1] Figure 21-10). Internally, a region called the dentate gyrus forms a major
part of the “perforant pathway” through the hippocampus. It is the largest
hippocampal region by cell count, containing roughly 1,000,000 granule cells
(vs. only 200,000 entorhinal cortex input cells) in the rat hippocampus [4].
Signals flow in from the entorhinal cortex, through the dentate gyrus granule
cells, then to areas CA3/CA1, and to the subiculum before returning back
to entorhinal cortex and out to the original external sources ([27] Figure
62-5).

Function The hippocampus is commonly known as being involved in
forming and recalling episodic memories, such as sequential patterns. Much
has been learned about its function from various memory disorders and le-
sions. It appears that the “content” of the memories are stored elsewhere
in cerebral cortex, but the hippocampus acts to tie them together into a
cohesive event or sequence.

Computational Models Besides the biological evidence already reviewed,
it is helpful to study computational models by other researchers. Atallah
et al [6] suggest that various brain regions are suited for different pur-
poses based on computational trade-offs. The hippocampus is specialized
for quickly learning specific details, i.e. "snapshots," while the posterior cor-
tex slowly learns statistical regularities. The authors discuss a connection
from hippocampus to the ventral striatum of the basal ganglia (possibly the
fornix pathway).

Banquet et al [7] proposed a cognitive architecture for robot control based
on the dentate gyrus and CA3/CA1 regions. They suggest a spectral timing
model for the dentate gyrus in which each granule cell responds to its in-
puts with a different temporal response pattern based on some physiological
variation within the cells. The result is a set of “spectral batteries” which
provide a recent history trace, enabling other regions to learn precisely-timed
responses based on their composite temporal pattern.

5.2 Functional Abstraction

We combine inspiration from the known structure and function of the hip-
pocampus with various computational needs present in our architecture to

57

design a Sequential Memory component (Figure 14). Functionally, the Se-
quential Memory stores and recalls sequences of patterns present in the
sensorimotor root node, and it provides a temporal state representation to
the Serial Decision Maker for learning precise reward predictions.

The multimodal root node of the Sensorimotor Belief Network has no parent
node to provide its prior distribution. This prior should be generated based
on prior experience about the sequential patterns present in the multimodal
root node’s belief state. We see the connection between multimodal cortical
areas and the entorhinal input/output area of the hippocampus as fulfilling
this role.

Learning to predict sequential patterns can be accomplished in various ways
[40]. Without regard to biological plausibility, we choose to handle this issue
by generating a type of spectral timing system called a tapped-delay line
memory (essentially a scrolling marquee of recent events), then training a
neural network predictor based on this temporal pattern. This is similar to
the spectral timing dentate gyrus model used in [7]. We essentially assume
that the purpose of the dentate gyrus is to provide a short-term memory
pattern of recent events (a distributed “clock”), that the CA3/CA1 areas
convert this pattern to a more linearly-separable version, and that the con-
nections back to entorhinal cortex learn to predict the next input pattern.

Besides sequential predictions, learning context-specific reward predictions
(within the Serial Decision Maker component) also requires a temporal pat-
tern of recent events. We assume that the fornix connection from the hip-
pocampus provides a copy of its internal clock (dentate gyrus), enabling the
ventral striatum to make temporally accurate reward predictions. In our
system we send a copy of the Sequential Memory’s temporal pattern array
to the Serial Decision Maker for this purpose (Figure 14).

5.3 Dynamic Reconstruction Algorithm

Our approach to the sequential prediction problem is similar to the algorithm
described in [19] (Section 13.11) for solving the “dynamic reconstruction”
problem (i.e. learning to reproduce a time-varying signal). Namely, we use
a delay-line memory representation of the recent history of inputs, plus a
learning neural network one-step predictor (a single-layer neural network).
This scheme, capable of learning relatively complex temporal patterns, is
shown in Figure 14. Theoretically, this setup allows recursive prediction by

58

Sequential Memory

Sensorimotor
Belief Network

multimodal
likelihood

Sensorimotor
Belief Network

multimodal prior

time

tapped-delay memory
(recent history array)

neural network predictor

tr
ai

n
pr

ed
ic

to
r

temporal state copy
to Serial Decision Maker

current pattern

predicted
next pattern

Figure 14: The Sequential Memory component. Takes the current multi-
modal belief state from the Sensorimotor Belief Network and encodes its
temporal activity using a tapped-delay line array. This array functions like
a scrolling marquee, holding a short history of recent activity. This tempo-
ral array is then used as input to a neural network predictor which tries to
predict the next input pattern based on past activity. This neural network
is trained with the actual input patterns. The predicted patterns are sent
out as the prior for the Sensorimotor Belief Network multimodal root node.
Also, a copy of the temporal array is sent out to the Serial Decision Maker
to help make reward predictions.

59

feeding its predictions back as inputs, thus operating as a recurrent network.

6 Serial Decision Maker

Until now we have discussed components within the architecture that involve
representing the world. This chapter concerns the decision making process:
using the results of that representation of the world to select from a set of
potential actions. This inevitably involves the concepts of reinforcement and
value, which provide a basis for comparing actions in a given context. We can
generally divide the decision making process into two separate procedures:
learning the value/utility of a given situation, and learning the appropriate
action to take in a given situation. In theoretical reinforcement learning these
procedures correspond to learning the value function and policy. In the brain
they both appear to occur within the basal ganglia. Indeed, there are inter-
esting connections between the basal ganglia macro structure and so-called
“actor-critic” reinforcement learning architectures, plus a strong similarity
between the firing patterns of midbrain dopamine neurons and theoretical
reward prediction error signals (e.g., temporal difference learning).

6.1 Inspiration from the Basal Ganglia

The basal ganglia are a collection of nuclei located deep within the cerebral
hemispheres. Their gross anatomy and circuitry are relatively well known,
and many of their functions have been characterized. However, much re-
search remains to be done in determining precisely their internal mech-
anisms. Recent computational models of dopamine neuron activity have
proven to be very influential in understanding their involvement in reward-
based learning.

Anatomy The striatum region is the primary input pathway of the basal
ganglia. Striatal inputs come from all regions of cerebral cortex (except pri-
mary visual and primary auditory), including sensorimotor regions and pre-
frontal cortex (see [48] Figure 17.4). The major output pathway is through
the globus pallidus, which projects to the thalamus and on to most areas
of the frontal cortex (including motor-related and working memory areas).
Dopamine neurons in the midbrain also send connections to various basal
ganglia nuclei.

60

Figure 15: Illustrations of the caudate and lenticular nuclei, major pieces
of the basal ganglia. The major input region is the striatum, comprised of
the caudate and putamen (part of the lenticular nucleus). Major outputs
come from the globus pallidus (another part of the lenticular nucleus). From
Gray’s Anatomy (public domain).

Function It appears that the functional roles of the basal ganglia fall
into two categories: associative learning of context-dependent value, and
selecting context-appropriate actions. The latter seems to depend on the
former: proper action selection requires first learning the value of various
actions. [50] discusses the general problem of action selection, describing the
basal ganglia as the primary means of controlling access to various limited
resources. The same authors also implemented a high-level basal ganglia
model in software, embodied it within a mobile robot, and let it provide
context-dependent action selection functionality to the robot [46].

Models In the reinforcement learning literature, an “actor-critic” archi-
tecture is a functional division of the reinforcement learning process into two
components: an actor which chooses actions and a critic which provides in-
structive feedback (both to the actor and to itself) based on reinforcements.
In [22] a parallel is made between such actor-critic architectures and the
basal ganglia, where the striosomal modules within the striatum are treated

61

as part of a critic system, and the matrisome/matrix modules are treated
as part of the actor.

One intriguing recent model involving basal ganglia function is the temporal
difference (TD) model of midbrain dopamine neuron activity, reviewed in
[56]. This model relates the purely theoretical TD learning algorithm [66]
with the activity of dopamine neurons in monkeys which appear to encode
reward prediction errors. This connection provides a basis for understanding
reinforcement learning in terms of biological constraints.

A more recent model of dopamine neuron activity is the “primary value
learned value” (PVLV) model by O’Reilly et al [42]. This model attempts to
overcome limitations of the TD-based model by providing separate mecha-
nisms for learning primary rewards (PV) and conditioned stimuli (LV).

6.2 Functional Abstraction

In designing an abstract decision making component (the Serial Decision
Maker, Figure 16), we follow the general functional division of the basal
ganglia into context-dependent value learning and context-dependent ac-
tion selection (i.e. an actor-critic architecture). This component provides an
action selection system that learns from reinforcement, including external
and curiosity-based internal rewards. Its “actor” is a discrete serial switch-
ing mechanism (a competitive winner-take-all network) which enables at
each instant one possible “action” out of a finite set. This set of actions
includes two types: 1) motor actions, which influence motor-related beliefs
in the Sensorimotor Belief Network, and 2) working memory actions, which
update memory cells in the Working Memory component (i.e. enabling in-
put/output gating of information to/from temporary storage). The “critic”
is based on the PVLV model of dopamine activity, which trains the ac-
tor. Both actor and critic utilize single-layer neural networks to learn their
context-dependent mappings.

The inputs to the Serial Decision Maker include the contents of various
other components, including the Sensorimotor Belief Network state, Working
Memory contents, and the Sequential Memory’s internal temporal pattern.
Note that the sensorimotor beliefs represent a more linearly separable version
of the raw sensory data, which enables simpler learning in the linear neural
networks here.

62

Serial Decision Maker

temporal state
(from Sequential

Memory)

static state
(from Sensorimotor

Belief Network
& Working
Memory)

ex
te

rn
al

re
in

fo
rc

em
en

t

internal
reinforcement

(from
Sensorimotor

Belief Network)

PVi LVeLVi

PVe

∑

Winner-take-all decision-making
neural network (one neuron per
motor/working memory action)

train value
networks

PV error LV error

decision sent to
Sensorimotor Belief Network,

Working memory,
& Parallel Decision Memory

-+
∑

∑

+-
∑

combined
temporal +
static state

provides context
for decisions

total value
error (trains

decision network)

Figure 16: The Serial Decision Maker component. The action selection mech-
anism is the winner-take-all network at the bottom which chooses actions
based on the entire input context. The rest of the components are part of the
PVLV model of dopamine activity, whose output trains the action selection
network.

63

7 Parallel Decision Memory

We assume that in most realistic environments, many of the Serial Decision
Maker’s actions will be frequently chosen in certain contexts, and therefore
will constitute a significant waste of resources. As the Serial Decision Maker
is a sort of bottleneck, focusing on only one decision at a time, it seems help-
ful (even essential) to store well-learned decisions elsewhere to be executed
automatically. This is the role of the Parallel Decision Memory component.
It constantly watches the Serial Decision Maker’s actions and learns to take
them over after many trials. If environmental demands change so that the
desired action in a given context is different, the Parallel Decision Memory
can adapt to fulfill the new requirements. Furthermore, it can drive many
targets in parallel, enabling complex motor output patterns with little in-
tervention from the Serial Decision Maker19.

For this component we take inspiration from the cerebellum and its rela-
tionship with the cerebral cortex and basal ganglia.

7.1 Inspiration from the Cerebellum

The cerebellum contains half of the brain’s neurons crammed into only 10%
of its total volume. Despite its massive cell counts, its structure is very repet-
itive: a few well-characterized circuits run through the cerebellum, making
it possible to study its overall function by focusing on a small number of
neural pathways. It seems possible that the cerebellum performs a single,
relatively simple function in parallel on massive arrays of data.

Anatomy Most cerebellar inputs come through the massive cortico-pontine-
granule cell pathway (the mossy fiber system). A relatively smaller input
pathway travels through the red nucleus-inferior olive-Purkinje cell route
(the climbing fiber system). Multiple independent point-to-point loops run
from the cerebral cortex through the red nucleus, inferior olive, cerebellar
Purkinje cells, deep cerebellar nuclei, thalamus, and back to cerebral cortex.

19Such parallel operation seems necessary in many everyday situations. Imagine the
complexity of many tasks we take for granted – maintaining upright posture (simultane-
ously controlling multiple leg and torso muscles) while using our arms for an unrelated
task, like painting. Our serial decision making process cannot handle hundreds of motor
decisions every second, and why should it? If it can offload its most common decisions to
an external system (the cerebellum), it can instead focus on truly novel decisions.

64

Figure 17: Cerebellum cross section. From Gray’s Anatomy (public domain).

Essentially, only a few distinct circuits run through the cerebellum, but they
are replicated millions of times.

Cerebellar inputs and outputs appear to be organized similarly to the basal
ganglia ([1] Figure 15-24): both receive inputs from most of the cerebral
cortex and send outputs back to the frontal cortex (motor and working
memory areas).

Function The cerebellum exerts its effect by modulating motor cortical
activity. It is involved generally in motor control and learning, but more
specifically in conditioned response learning, temporally-specific associative
learning, and timing of movement initiation and termination. Recently it
has been implicated in cognitive tasks like word retrieval [1]. It appears to
be well-suited to “take over” well-learned motor sequences [21].

Models The models of Marr [39] and Albus [2] interpret the mossy fiber
input system as carrying a type of distributed context representation, and
the climbing fiber inputs provide teacher signals based on errors between ac-
tual and desired motor performance (but see other interpretations of climb-
ing fiber activity reviewed in [9]). The Albus model in particular describes
the mossy fiber system in terms of a Perceptron-like pattern-recognition
system. [45] provided a computational cerebellum model within a larger
context, including the complete circuit through the basal ganglia, thalamus,
and inferior olive.

65

7.2 Functional Abstraction

The Parallel Decision Memory component (Figure 18) enables parallel mo-
tor automation, a sort of shadow of the Serial Decision Maker. It observes
commonly-chosen actions (by the Serial Decision Maker) and learns to per-
form them, offloading decisions from the action-selection bottleneck. In ad-
dition, whereas the Serial Decision Maker operates as a serial process, the
Parallel Decision Memory provides parallel outputs. It is implemented as
a massive single-layer neural network using simple supervised learning. It
learns a mapping from the current context (Sensorimotor Belief Network
and Working Memory state) to the desired control signal vector, and its
teaching signal is the Serial Decision Maker’s current choice. Both decision-
making components essentially receive the same contextual inputs and exert
their influence on the same targets.

8 Working Memory

In many realistic scenarios it is beneficial to be able to hold information
in mind temporarily and later let that information influence action. For
example, consider the task of hearing a telephone number and dialing it: the
number is spoken, the sound of the spoken digits fades within milliseconds,
but the listener can actively store and maintain those digits internally, then
later actively allow that internal representation to influence action (e.g.,
dialing the phone number). Notice the two actions required: active storing
and active retrieving. Essentially, working memory seems to be treated as a
set of actions, similar to motor commands.

Although the prefrontal cortex is not as well-characterized as other brain
regions, we can still gain much insight by studying its anatomy and assumed
behavioral roles.

8.1 Inspiration from the Prefrontal Cortex

The prefrontal cortex, which has greatly expanded in humans relative to
other mammals, appears to provide us with a host of executive functions,
like planning, decision making, prioritization, and judgment, all of which
are required for strategy formation and complex social situations. It is in-
teresting to speculate about the evolution of cortical regions. It is as if the

66

Parallel Decision Memory

Sensorimotor
Belief Network

state

Sensorimotor
Belief Network

influence
(motor only)

Working Memory
influence

Working Memory
state

motor
automation

network
working memory

automation
network

current Serial
Decision Maker

action

train
networks

context

Figure 18: The Parallel Decision Memory component. This operates as a
massive supervised single-layer neural network. Contextual inputs are pro-
vided to the network to compute its outputs. The weights are trained with
the error between actual and desired outputs. However, only the weights
related to the currently-chosen action (by the Serial Decision Maker) are
trained. The resulting output array is sent out to influence motor control
and working memory updating.

67

sensory cortex “grew out of” the early hippocampus (which started as an
outgrowth of the olfactory system) [12], sensory cortex evolved an extension
with motor outputs (the motor cortex), basal ganglia evolved connections
to the motor cortical regions for action selection, and later the motor cortex
evolved an extension (prefrontal cortex) which lost the motor outputs but
maintained the basal ganglia selection mechanism. This intriguing structure
provides inspiration for the Working Memory component of the Sapience
architecture.

Figure 19: View of the underside of the brain showing the prefrontal cortex
at the top. From Gray’s Anatomy (public domain).

Anatomy In front of the premotor cortex, the prefrontal area makes up
most of the frontal lobe in humans [1]. It maintains reciprocal connections
with many other cortical regions and with the basal ganglia. Similar to
the columnar organization of the sensorimotor cortex, the prefrontal cortex
appears to be organized into a discrete set of “stripes,” of which there are
approximately 20,000 in humans [20].

Function Interestingly, unlike the more posterior areas of frontal cortex
(primary motor, premotor, and supplementary motor), the prefrontal regions
generally do not produce motor responses following electrical stimulation.

Many behavioral correlates of the prefrontal cortex can be inferred from
damage to this area. Such damage may lead to deficits involving atten-
tion allocation, short-term/working memory, decision making, initiation of
behavior, distractibility, impulsiveness, failure to complete tasks, or perse-
veration (failure to recognize when a task is complete) (see [1] pp. 250-251).

68

Models One recent model involving the prefrontal cortex is the PBWM
(prefrontal cortex/basal ganglia/working memory) model by Hazy, Frank,
& O’Reilly [20]. In this model the basal ganglia model is able to selectively
update working memory “stripes” in prefrontal cortex with new informa-
tion from the posterior/sensorimotor cortex. It must learn which stripes to
update based on reinforcements – if a particular working memory represen-
tation tends to provide more rewards (or less punishment), it will be chosen
more often. This scheme follows the basic reinforcement learning paradigm,
applied to working memory actions instead of motor actions.

8.2 Functional Abstraction

In designing our Working Memory component (Figure 20) the core feature
is a discrete number of memory cells. This follows the stripe-like organi-
zation of prefrontal cortex.We follow the inspiration of the PBWM model
[20], namely that working memory units are treated as possible “actions”
to be chosen by a basal ganglia-like decision maker. Working Memory cells
can be selectively written to (with contents from the Sensorimotor Belief
Network) or read from (allowing memory cells’ contents to influence senso-
rimotor beliefs and also the decision making components). Fortunately, we
have already defined our Serial Decision Maker to choose actions in a fairly
general way. Now we can simply extend its set of actions to include read and
write actions within a Working Memory component. In any given context,
the Serial Decision Maker might choose to enable some motor action, write
something to working memory (Sensorimotor Belief Network beliefs), or read
something back out of working memory (influencing beliefs or actions).

The Working Memory component acts as a temporary memory storage area.
Its implementation is relatively simple because its discrete operations are
very similar to those of digital computers. Its intimate connection with the
decision making components makes it essentially a type of "neural RAM"
with distinct read/write operations. We distinguish between two types of
memory cells: discrete cells and binary cells. When the "read" action is cho-
sen on a discrete cell, it pulls in new sensorimotor contents (current posterior
distributions). When the "write" action is chosen, its output gate is opened,
and its contents influence sensorimotor beliefs (as an extra likelihood mes-
sage, or “virtual evidence”) and the decision making components. For binary
cells the same read/write operations exist, but the cells are not connected
to the Sensorimotor Belief Network – they simply act as general purpose

69

Working Memory

current Serial
Decision Maker

action

Sensorimotor
Belief Network

state

current Parallel
Decision Memory

action

Working Memory
state (to Serial

Decision Maker &
Parallel Decision

Memory

Sensorimotor
Belief Network

influence
discrete cells

(store & influence
sensorimotor

state)

binary cells
(store arbitrary

patterns,
influence

decision making)

current read/write action
(only write-enabled cells are changed,

only read-enabled cells are output)

Serial Decision
Maker overrides
Parallel Decision
Memory actions

Figure 20: The Working Memory component is comprised of an array of dis-
crete gated memory cells which write to/read from the Sensorimotor Belief
Network. It also includes a set of binary cells, not influenced by sensorimotor
beliefs, which simply influence the decision making components. Read/write
operations are driven by the Serial Decision Maker and the Parallel Decision
Memory.

70

storage for influencing future decisions.

Interestingly, the entire contents of this Working Memory array are included
as input to the Serial Decision Maker; thus, a recursive relationship exists
where Working Memory contents affect the next read/write action, which
modifies Working Memory contents, which then affects the next read/write
action, etc. This provides a foundation for learning arbitrary action se-
quences/motor programs. It might even be possible to demonstrate a corre-
spondence between this Serial Decision Maker/Working Memory mechanism
and a universal Turing machine, where the Serial Decision Maker acts as the
“head” (choosing memory cells and performing read/write actions) and the
Working Memory cells act as the “tape.” This would be a powerful theoret-
ical foundation for our Working Memory component and might provide an
intriguing framework for studying basal ganglia/prefrontal cortex interac-
tions.

9 Completed Work

This chapter covers the work completed so far, including implementations
of the main architecture components, a probe tool for real-time introspec-
tion (plots and 3D visualizations) of the system’s internal variables, and a
simulation environment for running embodied experiments. Altogether, the
current implementation, experimental programs, and auxiliary tools repre-
sent over 1 megabyte of source code (uncompressed C++ and Python text
files).

9.1 Component Implementations

All five components described earlier have been implemented in C++. The
Sensorimotor Belief Network has undergone extensive testing in isolation.
The Sequential Memory has been tested successfully on a keyboard-based
melodic sequence storage and recall program. The PVLV model within the
Serial Decision Maker has been tested successfully on a basic classical con-
ditioning program. The Parallel Decision Memory and Working Memory
implementations have not yet been tested on such specific experiments.

The implementation includes various free parameters for balancing speed
vs. accuracy. It also includes support for thread-based parallelization of
Bayesian network updating, which should improve runtime performance on

71

Figure 21: Probe window showing real-time plots of key internal variables.

multi-processor machines. Also, many test programs have been written to
test small parts of the implementation (e.g., a real-time density estimation
visualization to test the kernel mixture model, as shown in Figures 8, 9, 10,
and 11, and a topographic map formation test, shown in Figure 7).

9.2 Architecture Probe Tool

Besides the architecture implementation, we have implemented a probe tool
(see Figures 21 and 22). This tool accesses the Sapience architecture imple-
mentation and displays its various internal variables in a separate window,
including many real-time plots. The information provided by this tool will
be crucial in debugging any problems during experimentation.

9.3 Simulation Platform

In order to test our architecture implementation on various learning exper-
iments, we have implemented a 21-degree-of-freedom simulated arm. The

72

Figure 22: Probe window showing a visual representation of the Sensorimotor
Belief Hierarchy. In this case the input data is coming from a set of natural
images, and the various levels in the hierarchy display the learned kernel
center/weight vectors (visual image filters).

73

Figure 23: Screenshot of simulated arm.

simulation environment uses Ogre [65] to render 3D graphics and Open
Dynamics Engine [57] with OPAL [64] to simulate collision detection and
physics. The arm itself is fixed in space at the shoulder joint and positioned
above a table-like surface which can be used for manual exploration of vari-
ous simulated objects (Figure 23). Each joint degree of freedom (some joints
have multiple DOFs) in the arm and hand uses pre-defined rotational limits
roughly corresponding to range of motion present in the human arm and
hand joints. Sensory inputs are provided from three main sources: proprio-
ception (joint angles and motor force output), touch (simulated skin contact
sensors), and vision (a single grayscale video stream). Motor outputs drive
servo controllers present in each joint degree of freedom. Figure 24 shows the
simulation again with visualization of the touch sensors and vision stream.

Proprioception Each joint degree of freedom provides two types of pro-
prioceptive information: the current angle and the current force output, both
normalized to [0, 1].

Touch Sensors The surface of the skin is covered with an array of touch
sensors. These simply provide binary touch feedback as follows: when any
object contacts the skin, the nearest touch sensor is made active. Touch

74

Figure 24: Arm simulation with sensory system visualization enabled. This
shows the simulated eye (monochrome, monocular vision) as well as the
touch sensor positions across the skin surface.

sensors without any nearby contacts remain inactive.

Vision To simulate vision we render the entire 3D scene from a single
(monocular) viewpoint onto a 2D texture in memory. Color information
is removed – we focus only on monochrome vision. The 2D texture data
can then be sent directly to the Sapience architecture as sensory input. This
texture can also be displayed on the screen for debugging, as shown in Figure
24.

Servo Motors Each joint degree of freedom utilizes a servo motor to
control limb motion. The built-in feedback mechanism in these controllers
mimics the spinal stretch reflex ([58], section 2.5), maintaining a desired an-
gle (within certain force limits) despite external disturbances. This allows
the higher-level controller (the Sapience architecture implementation) to fo-
cus on setting simpler parameters like desired angles without focusing on
precise force values. The actual control mechanism is a “force-limited ve-
locity constraint” (FLVC), which is similar to but more robust than a PID
controller. Smith implemented FLVCs (joint motors) in the Open Dynamics

75

Engine software library. Other researchers [51] have also used FLVCs in sim-
ulations instead of PD/PID controllers, citing that they are simpler (fewer
free parameters) and more numerically stable.

A FLVC takes a desired velocity (e.g., a rate of rotation) and a maximum
force. The physics simulator’s constraint solver then tries to reach the tar-
get velocity in one time step using up to the maximum force. (Instead, we
wish to set the controller’s desired joint angle, so we simply set the FLVC’s
desired velocity in proportion to the error between the current joint an-
gle and the desired angle.) Thus, each joint DOF has a sort of equilibrium
point (the desired angle) which can be set. Additionally, we wish to control
the amount of stiffness present in a joint. For this we simply interpret the
FLVC’s maximum force value as the joint stiffness which can be set along
with the equilibrium point.

The resulting motor system allows independent control of joint angle and
stiffness, a very general control scheme for jointed systems (see [32] for bio-
logical evidence of this type of dual control). Critically, two related variables
(actual joint angle and actual force output) are provided as proprioceptive
sensory inputs, as described above. This enables the Sapience architecture’s
motor output signals to be expressed in terms of the sensory data space
(proprioception) it has learned to represent.

9.4 Initial Runtime Performance Test

With all five Sapience architecture components enabled and connected to
the arm simulation, we performed an initial runtime performance test of our
implementation to ensure that, in practice, it can be updated at a reasonable
rate. This test was performed on a computer with a dual 2.8 GHz Pentium
D CPU, 3 GB RAM, and a GeForce 6800 video card. The system was given
42 proprioceptive inputs (joint angle and force output for each joint DOF),
a 32x32 pixel visual input, no touch sensors enabled, and 42 motor outputs
(desired joint angle and stiffness for each joint DOF).

The Sensorimotor Belief Network contained 60 nodes (17 sensory, 42 motor,
1 multimodal), with a total of 931 belief values (all posteriors concatenated).
The Sequential Memory had 400 inputs and 400 outputs. The Serial Deci-
sion Maker had 1862 static inputs (sensorimotor + working memory), 553
temporal inputs (from the Sequential Memory), and 498 outputs (motor +
working memory). The Parallel Decision Memory had 1862 inputs (senso-

76

Figure 25: Initial runtime profiling results. The total update took less than
50 ms on average. Abbreviations refer to the five main Sapience components.
The initial increase and later decrease in runtime for the Sensorimotor Belief
Network (also reflected in the total) is due to an initial increase in topo-
graphic lattice connections (for the kernel mixture models) and subsequent
removal as the neighborhood size shrinks. See text for more details.

rimotor + working memory), 378 motor outputs, and 60 working memory
outputs. The Working Memory used 60 discrete cells, zero binary cells, and
had 931 reciprocal sensorimotor connections. Multithreading was enabled
for Sensorimotor Belief Network processing. We updated the Sapience im-
plementation at a rate of 10 Hz, the physics simulation at 100 Hz, and the
3D graphics at roughly 50 Hz.

The resulting timing plot is shown in Figure 25. In summary, each Sapience
update took about 50 ms, with the Sensorimotor Belief Network consuming
about 22 ms per update, the Serial Decision Maker and Parallel Decision
Memory each taking about 13 ms per update, and the Sequential Memory
and Working Memory each taking about 1 ms per update. This initial es-
timate shows that our Sapience implementation, with modest input/output
dimensionality, can run in real-time on a standard computer, leaving enough
time to maintain the desired physics and graphics update rates. We expect
the runtime performance to improve further with future software optimiza-
tions and potential support for GPGPU (general purpose graphics processor)

77

acceleration of the kernel mixture model algorithm (the most CPU-intensive
part).

10 Proposed Work

We propose to perform a set of experiments in order to evaluate the Sapience
architecture’s effectiveness towards its learning objectives. The two main
measurable objectives, defined earlier, involve external reward intake and
world model improvements.

These experiments attempt to demonstrate fully autonomous motor develop-
ment, driven by simple reinforcements, capable of handling high-dimensional
sensory data and motor outputs. Our general strategy is to start with simpler
tests, with most components disabled, and incrementally add more compo-
nents. This will hopefully show the overall benefits of each component in
terms of the learning objectives.

10.1 Experiment Set 1: Passive Data Compression

Initially we plan to start with only the Sensorimotor Belief Network and a
naive Sequential Memory (i.e. the output priors simply equal the previous-
step likelihood inputs). This minimal system will be given vision inputs only;
there will be no motor-related inputs or outputs. The simulated arm will be
driven externally by a simple reflex control system, providing continually
changing visual inputs. No internal or external rewards will be involved.

We will plot the model improvement rate (reconstruction error and/or in-
formation gain methods) over time based on the visual inputs and no active
control over the input distribution. This will provide a baseline measurement
for comparison with later experiments.

We will perform the experiment three times: once with only a single belief
node (no hierarchical division of input space), again with the hierarchical
Bayesian representation to show the benefit of such a hierarchical represen-
tation, and once more with the full (non-naive) Sequential Memory enabled
to show the benefit of its sequential prediction capabilities.

78

10.2 Experiment Set 2: Active Data Compression

This set of experiments builds on the previous set. Starting the arm simula-
tion with the same motor reflex system as before, this time the control signals
will gradually transition to be controlled by the Sequential Decision Maker.
In addition to visual sensory inputs, proprioceptive inputs will be included.
Internal curiosity rewards will be provided based on model improvements.
Similar plots will be generated as before regarding the model improvement
rate; however, this time the curiosity rewards should encourage targeted
exploration, resulting in a noticeably better model improvement rate.

Optionally, it may be possible to generate a set of images of the simulated
arm representing the learned motor gestures; this would be possible by artifi-
cially biasing the belief values in the multimodal belief node, letting this bias
influence motor outputs, and visualizing the resulting arm configuration.

10.3 Experiment Set 3: External Reward Acquisition

This third set of experiments adds external rewards. A simple reaching task
can be defined, where a target position is presented to the system with a
visual indicator. When the hand intersects the target position, a reward is
given, and the target is moved to a different position. This scheme can be
repeatedly endlessly. A plot will be generated of the reward acquisition rate
over time, with and without the inclusion of internal curiosity rewards. This
should show the benefit of curiosity rewards for targeted exploration, leading
to improved performance on externally-rewarded tasks (as demonstrated on
a much simpler domain in [61]).

Optionally, it would be possible to generate a series of plots with the effect of
curiosity rewards scaled relative to external rewards (e.g., curiosity rewards
scaled to be 0.5X, 1X, and 2X as powerful as external rewards). There may
be an optimal relationship between internal and external rewards which, for
example, results in behavior that includes some amount of exploration but
not so much that it interferes with externally-rewarded task learning.

10.4 Optional Experiments

These extra experiments will be performed if there is time remaining before
the final defense.

79

10.4.1 Parallel Decision Memory Benefits

Enabling the Parallel Decision Memory component should demonstrate a
transfer of motor control away from the Serial Decision Maker for well-
learned tasks, similar to the computational cerebellum/basal ganglia model
in [45]. This would be demonstrated within the same experimental envi-
ronment as described above, where the task is to reach towards rewarding
positions in space. However, by plotting the influence of both the Serial
Decision Maker and the Parallel Decision Memory on the motor areas of
the Sensorimotor Belief Network, we hope to show a reduction in influence
by the Serial Decision Maker along with a simultaneous increase in Parallel
Decision Memory influence. Further, we could show the benefits in terms of
reward acquisition by adding this extra component, simply by plotting the
external reward acquisition rate over time on the reaching task (vs. with the
Parallel Decision Memory disabled). Finally, by switching the task definition
partway through the experiment (e.g., by changing the visual indicator rep-
resenting the goal position), it should be possible to demonstrate an abrupt
increase in Serial Decision Maker control as the Parallel Decision Memory
suddenly begins making more errors.

10.4.2 Working Memory Benefits

Enabling the Working Memory component should demonstrate the ability
to learn tasks which require active internal maintenance of task-relevant in-
formation. This could be demonstrated with a simple cued response task:
briefly display one of two visual indicators, wait a short period, and request
one of two responses from the system. The earlier visual indicator would
represent which of the final responses is appropriate. If the correct cued
response is chosen, an external reward is given; otherwise, an external pun-
ishment is given. This type of task should be impossible to solve without
the Working Memory enabled.

10.4.3 Improved Kernel Mixture Model Learning Rule

This experiment has an entirely different goal from the others. The kMER
algorithm described earlier can be viewed as an approximation to the info-
max learning principle. kMER’s basis as an “equiprobabilistic” learning rule
is a heuristic which might be improved, making it even closer to the info-

80

max ideal. Figure 26 represents one such improvement which may provide
benefits over kMER. Briefly, instead of producing a set of receptive fields
which contain the same number of data samples (regardless of overlap with
other receptive fields), it may be possible to devise a modification of kMER
where each receptive field contains the same number of “normalized” sam-
ples (e.g., a sample lying within two receptive fields only counts as half).
The motivation behind this change is that by assuming the kernels repre-
sent data-generating processes, a data sample should be attributed to only
one kernel, or partway to multiple kernels, but not fully to multiple kernels.
Initial experiments, already performed, show that this type of learning rule
is possible. It remains to be seen whether this new scheme provides actual
benefits, as measured on standard density estimation and pattern classifica-
tion tasks. (Note: I have been working on this problem via email with Marc
Van Hulle who created the kMER algorithm.)

81

Equal code membership rule (kMER)

150 150

50

100 100

kernel 1
250
100
200
0.33
0.36
0.4

kernel 2
250
200
150
0.33
0.27
0.8

kernel 3
250
100
200
0.33
0.36
0.4

Total # samples within radius
overlapping samples

samples after sharing
Mean activation probability

Mean fuzzy code membership
Overlap fraction

750 samples total
(200 outside, 200 overlapping)

kernel 1
250
100
200
0.31
0.33
0.4

kernel 2
300
200
200
0.38
0.33
0.66

kernel 3
250
100
200
0.31
0.33
0.4

Equal fuzzy code membership rule

150 150

100

100 100800 samples total
(200 outside, 200 overlapping)

Total # samples within radius
overlapping samples

samples after sharing
Mean activation probability

Mean fuzzy code membership
Overlap fraction

Figure 26: A visual representation of the major difference between the kMER
learning rule and a new equal fuzzy code membership rule. In this hypotheti-
cal example we show the difference between two different radius update rules,
assuming fixed centers. The numbers in the diagrams indicate the number
of samples within each region. The size of each receptive field indicates the
number of samples it contains. kMER produces an equal number of samples
within each receptive field (ignoring overlap), while the equal fuzzy code
membership rule shares samples more fairly by dividing them among over-
lapping receptive fields. Note that the major difference between these two
rules concerns overlap; when there is no overlap, the results are the same.

82

References

[1] Adel K. Afifi and Ronald A. Bergman. Functional Neuroanatomy: Text
and Atlas, 2nd Edition. McGraw Hill, New York, NY, 2005.

[2] James S. Albus. A theory of cerebellar function. Mathematical Bio-
sciences, 10:25–61, 1971.

[3] James S. Albus and Alexander M. Meystel. Engineering of Mind: An
Introduction to the Science of Intelligent Systems. John Wiley & Sons,
New York, NY, 2001.

[4] David G. Amaral, Norio Ishizuka, and Brenda Claiborne. Progress in
Brain Research, Volume 83: Understanding the Brain through the Hip-
pocampus, chapter Neurons, Numbers and the hippocampal network,
pages 1–11. Elsevier Science, Amsterdam, 1990.

[5] John R. Anderson. The Architecture of Cognition. Harvard University
Press, Cambridge, MA, 1983.

[6] Hisham E. Atallah, Michael J. Frank, and Randall C. O’Reilly. Hip-
pocampus, cortex, and basal ganglia: Insights from computational mod-
els of complementary learning systems. Neurobiology of Learning and
Memory, 82:253–267, 2004.

[7] Jean Paul Banquet, Philippe Gaussier, Arnaud Revel, and Sorin Moga.
Sequence learning and timing in hippocampus, prefrontal cortex, and
accumbens. In Proceedings of the International Joint Conference on
Neural Networks, pages 1053–1058, Washington, DC, 2001. IEEE.

[8] William Bialek, Rob R. de Ruyter van Steveninck, and Naftali Tishby.
Efficient representation as a design principle for neural coding and com-
putation, 2007. arXiv:0712.4381.

[9] James R. Bloedel and Vlastislav Bracha. Current concepts of climbing
fiber function. The Anatomical Record, 253(4):118–126, 1998.

[10] I.C. Bruce and W.G. Tatton. Synchronous development of motor cor-
tical output to different muscles in the kitten. Experimental Brain
Research, 40:349–353, 1980.

[11] Gordon M. Burghardt. The Genesis of Animal Play: Testing the Limits.
MIT Press, Cambridge, MA, 2005.

83

[12] Ann B. Butler and William Hodos. Comparative Vertebrate Neu-
roanatomy, 2nd Edition. John Wiley & Sons, Inc., Hoboken, NJ, 2005.

[13] Peter Dayan and Larry F. Abbott. Theoretical Neuroscience: Compu-
tational and Mathematical Modeling of Neural Systems. MIT Press,
2001.

[14] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
Royal Statistical Society. Series B (Methodological), 39:1–38, 1977.

[15] Kenji Doya. Complementary roles of basal ganglia and cerebellum
in learning and motor control. Current Opinion in Neurobiology,
10(6):732–739, 2000.

[16] Karl Friston. Hierarchical models in the brain. PLoS Computational
Biology, 4(11):e1000211, 2008.

[17] Apostolos P. Georgopoulos. Arm Movements in Monkeys: Behavior
and Neurophysiology. Journal of Comparative Physiology: A. Sensory,
Neural, and Behavioral Physiology, 179(5):603–612, 1996.

[18] Richard Granger. Engines of the brain: The computational instruction
set of human cognition. AI Magazine, 27:15–32, 2006.

[19] Simon Haykin. Neural Networks and Learning Machines. Prentice Hall,
2008.

[20] Thomas E. Hazy, Michael J. Frank, and Randall C. O’Reilly. Towards
an executive without a homonculus: Computational models of the pre-
frontal cortex/basal ganglia system. Philosophical Transactions of the
Royal Society B, 2007.

[21] O. Hikosaka, K. Miyashita, S. Miyachi, K. Sakai, and X. Lu. Differential
roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor
sequence learning. Neurobiology of Learning and Memory, 70:137–149,
1998.

[22] James C. Houk, James L. Adams, and Andrew G. Barto. Models of
Information Processing in the Basal Ganglia, chapter A Model of How
the Basal Ganglia Generate and Use Neural Signals That Predict Re-
inforcement, pages 249–270. MIT Press, Cambridge, MA, 1995.

84

[23] David H. Hubel and Torsten N. Wiesel. Receptive fields of cells in
striate cortex of very young, visually inexperienced kittens. Journal of
Neurophysiology, 26:994–1002, 1963.

[24] Marc M. Van Hulle. Faithful Representations and Topographic Maps:
From Distortion- to Information-Based Self-Organization. Wiley, New
York, NY, 2000.

[25] Laurent Itti and Pierre Baldi. Bayesian surprise attracts human at-
tention. In Bernhard Schölkopf, John Platt, and Thomas Hofmann,
editors, Advances in Neural Information Processing Systems 19, pages
547–554. MIT Press, Cambridge, MA, 2006.

[26] Christopher Johansson and Anders Lansner. Towards cortex sized ar-
tificial neural systems. Neural Networks, 20:48–61, 2007.

[27] Eric R. Kandel, H. Schwartz James, and Thomas M. Jessel. Principles
of Neural Science, Fourth Edition. McGraw-Hill, New York, NY, 2000.

[28] Tuevo Kohonen. Self-Organizing Maps. Springer, New York, 1997.

[29] John R. Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, Cambridge, MA,
1992.

[30] Ray Kurzweil. The Age of Spiritual Machines: When Computers Exceed
Human Intelligence. Penguin USA, New York, NY, 1999.

[31] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An ar-
chitecture for general intelligence. Artificial Intelligence, 33(1):1–64,
1987.

[32] Mark L. Latash. Independent control of joint stiffness in the framework
of the equilibrium-point hypothesis. Biological Cybernetics, 67:377–384,
1992.

[33] Tai Sing Lee and David Mumford. Hierarchical bayesian inference in the
visual cortex. Journal of the Optical Society of America A, 20(7):1434–
1448, 2003.

[34] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE
Transactions on Information Theory, 37(1):145–151, 1991.

[35] Dennis V. Lindley. On a measure of the information provided by an
experiment. Annals of Mathematical Statistics, 27(4):986–1005, 1956.

85

[36] Ralph Linsker. Self-organization in a perceptual network. Computer,
21(3):105–117, 1988.

[37] Moshe Looks. Competent Program Evolution. PhD thesis, Washington
University, Saint Louis, MO, 2006.

[38] Henry Markram. The blue brain project. Nature Reviews Neuroscience,
7(2):153–160, 2006.

[39] David Marr. A theory of cerebellar cortex. Journal of Physiology,
202:437–470, 1969.

[40] Michael D. Mauk and Dean V. Buonomano. The neural basis of tem-
poral processing. Annual Review of Neuroscience, 27:307–340, 2004.

[41] Vernon B. Mountcastle. The columnar organization of the neocortex.
Brain, 120:701–722, 1997.

[42] Randall C. O’Reilly, Michael J. Frank, Thomas E. Hazy, and Brandon
Watz. Pvlv: The primary value and learned value pavlovian learning
algorithm. Behavioral Neuroscience, 121(1):31–49, 2007.

[43] Randall C. O’Reilly and Yuko Munakata. Computational Explorations
in Cognitive Neuroscience: Understanding the Mind by Simulating the
Brain. MIT Press, Cambridge, MA, 2000.

[44] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[45] Charles Peck, Tyler Streeter, and James Kozloski. An integrated
cerebro-cerebellar model demonstrating associative learning and motor
control. In Proceedings of the 10th Tamagawa-Riken Dynamic Brain Fo-
rum, Hakuba, Nagano, Japan, 2007. Tamagawa University-Riken Brain
Science Institute.

[46] Tony J. Prescott, Fernando M. Montes Gonzalez, Kevin Gurney,
Mark D. Humphries, and Peter Redgrave. A robot model of the basal
ganglia: Behavior and intrinsic processing. Neural Networks, 19:31–61,
2006.

[47] The Open Cognition Project. Opencog prime.
http://opencog.org/wiki/OpenCogPrime, May 2008. Open source AGI
design.

86

[48] Dale Purves, George J. Augustine, David Fitzpatrick, William C.
Hall, Anthony-Samuel LaMantia, James O. McNamara, and S. Mark
Williams. Neuroscience. Sinauer, Sunderland, MA, 2004.

[49] Rajesh P. N. Rao and Dana H. Ballard. Predictive Coding in the Visual
Cortex: A Functional Interpretation of Some Extra-Classical Receptive-
Field Effects. Nature Neuroscience, 2(1):79–87, 1999.

[50] Peter Redgrave, Tony J. Prescott, and Kevin Gurney. The basal ganglia:
A vertebrate solution to the selection problem? Neuroscience, 89:1009–
1023, 1999.

[51] Torsten Reil and Colm Massey. Morpho-functional Machines: The New
Species: Designing Embodied Intelligence, chapter Facilitating Con-
troller Evolution in Morpho-functional-Machines - A Bipedal Case
Study, pages 81–98. Springer, 2003.

[52] Juergen Schmidhuber. Curious Model-Building Control Systems. In
Proceedings of the International Joint Conference on Neural Networks,
Singapore, Volume 2, pages 1458–1463. IEEE, 1991.

[53] Juergen Schmidhuber. Simple algorithmic theory of subjective beauty,
novelty, surprise, interestingness, attention, curiosity, creativity, art, sci-
ence, music, jokes. Journal of SICE, 48(1):21–32, 2009.

[54] Juergen Schmidhuber. Ultimate cognition a la goedel. Cognitive Com-
putation, 1:177–193, 2009.

[55] Juergen Schmidhuber, Jan Storck, and Josef Hochreiter. Reinforcement
driven information acquisition in non-deterministic environments. In
Proceedings of the International Conference on Artificial Neural Net-
works, pages 159–164, Paris, France, 1995. ICANN.

[56] Wolfram Schultz. Multiple Reward Signals in the Brain. Nature Reviews
Neuroscience, 1:199–207, 2000.

[57] Russell Smith. Open dynamics engine. http://www.ode.org, April 2001.
Open source rigid body dynamics library.

[58] Russell L. Smith. Intelligent Motion Control with an Artificial Cere-
bellum. PhD thesis, University of Auckland, Auckland, New Zealand,
1998.

87

[59] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation, 10(2):99–
127, 2002.

[60] Tyler Streeter. Design and implementation of general purpose reinforce-
ment learning agents. Master’s thesis, Iowa State University, Ames, IA,
2005.

[61] Tyler Streeter. Curiosity-driven exploration with planning trajectories.
In Proceedings of the Twenty-First National Conference on Artificial
Intelligence, pages 1897–1898, Boston, MA, 2006. AAAI.

[62] Tyler Streeter. A hierarchical empirical bayesian model of cerebral
cortex. http://www.agi-09.org, March 2009. Poster presentation.

[63] Tyler Streeter, James Oliver, and Adrian Sannier. Verve: A general
purpose open source reinforcement learning toolkit. In Proceedings of
the ASME International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, pages 359–369,
Philadelphia, PA, 2006. ASME.

[64] Tyler Streeter, Andres Reinot, Alan Fischer, and Oleksandr Lozitskiy.
Open physics abstraction layer. http://opal.sourceforge.net, September
2004. Open source physics API.

[65] Steve Streeting. Ogre. http://www.ogre3d.org, February 2000. Open
source 3D graphics engine.

[66] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

88

