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Motivation: Software Brains for…
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Real robots
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Motivation

• Software brain as a black box (agent approach)
• Adaptable (machine learning algorithms)
• Useful (achieves human-provided goals)
• Autonomous goal selection (curiosity)
• Arbitrary body (sensor & motor) configurations



System Objectives

• What should our software brain do?
• Achieve human-provided goals
• Define goals with theoretical reinforcement learning

– Positive reinforcement = reward = good
– Negative reinforcement = punishment = bad
– Try to maximize positive reinforcement

• Human programmer defines goals, gives rewards 
for achieving them

• System implicitly achieves goals by maximizing 
rewards



System Objectives
Divide into two learning objectives and rewards:
• Objective 1 Achieve external goals

– External rewards given by programmer
– Needs a good world model

• Objective 2 Achieve internal curiosity goals
– Internal rewards proportional to improvements to the 

world model
– Autonomous goal selection
– Helps achieve Objective 1



Organizing Principle: The Brain

• Mammalian brain already achieves our objectives
– Learned world model (sensory and motor cortex)
– Learning context-dependent action selection (basal ganglia)

• Use abstract brain organization to guide architecture design
• What was evolution “trying” to design?
• Each major brain structure provides unique computational 

benefit to the animal
• …which machine learning algorithms solve similar 

problems? (feature extraction, temporal pattern 
representation, credit assignment, supervised learning, 
short-term memory storage and retrieval, …)



Research Strategy

• Design abstract architecture of interacting components
– Define computational needs
– Find the current best practical algorithms to fulfill each need

• Implement components in software
• Test individual pieces in isolation

– Unsupervised learning (density estimation, pattern classification)
– Sequential prediction (temporal pattern learning)
– Reinforcement learning (classical conditioning, toy problems)

• Integrate components into a single system
• Simulated test environments, bodies, real-time probe tools
• Measure overall progress toward objectives (external rewards, 

model improvements)



Previous Work

• Artificial evolution of neural network motor controllers
• Complex multi-dimensional control with little human feedback
• Video: standing http://video.google.com/videoplay?docid=-2510462304066175045

• Video: jumping http://video.google.com/videoplay?docid=1002062030982551847

• Video: walking http://video.google.com/videoplay?docid=-1150508620047972951



Previous Work

• MS thesis: “Verve” reinforcement learning architecture and 
implementation

• Same general motivation: to create a software brain
• More heuristic vs. information theoretic methods used here
• Limited to low-dimensional sensors, discrete actions
• Video: pole balancing learned from simple reinforcements 

http://video.google.com/videoplay?docid=8226600171334714429



Sapience Architecture

• Real-valued input/output arrays
• External and internal (curiosity) reinforcement mechanisms
• 5 internal components

– Sensorimotor Belief Network: internal model of the world, 
inspired by sensory and motor cortex

– Sequential Memory: sequential predictions, inspired by 
hippocampus

– Serial Decision Maker: choose actions based on reinforcement, 
inspired by basal ganglia

– Parallel Decision Memory: automates well-learned actions, 
inspired by cerebellum

– Working Memory: extends action set w/ short-term memory, 
inspired by prefrontal cortex





Sensorimotor Belief Network

• Brain inspiration: sensory and motor cortex
• Receives sensory input data, produces motor control outputs
• Probabilistic model of the external world (Bayesian inference)
• Learned symbolic representation of data “causes”
• Computes model improvements (used for curiosity rewards)
• Provides a “context representation” for decision making 

components
• Can be influenced/biased by other components





Sensorimotor Belief Network

Bayesian Inference

• C: discrete “class” variable (set of causes/hypotheses)
• E: continuous “evidence” vector variable (data samples)
• P(C|E): posterior probability of each class being the cause of the 

given evidence/data
• P(C): prior probability of each class for any given data sample
• P(E|C): probability of seeing the current data sample assuming a 

certain value for C (aka the “likelihood”)
• P(E): prior probability of seeing the data sample (ignored, used 

only for normalization)



Sensorimotor Belief Network

Symbolic Representation
• Represent data points 

in Euclidean space
• Classify with d-

dimensional Gaussian 
kernels (kernel mixture 
model)

• kMER algorithm learns 
kernel center, radius 
(unsupervised, 
infomax-based)

• For each sample, 
compute PMF over 
kernels/classes/
causes/hypotheses



Sensorimotor Belief Network

Bayesian Network
• Curse of dimensionality: 

machine learning gets 
harder for high-
dimensional data

• Subdivide data space into 
small-dimensional 
subsets

• Combine results with 
Bayesian network 
(distributed Bayesian 
inference)

• Demo: natural images



Sensorimotor Belief Network

Model Improvements, Curiosity

• Measure the “divergence” (in bits/nats) between the prior 
and posterior distributions

• DKL(posterior||prior) = info gain from new data = 
improvement to the world model

• Total model improvement: average info gain over all nodes 
in Bayesian hierarchy

• Use model improvement as internal curiosity reward



Sensorimotor Belief Network

Generating Motor Outputs
• In hierararchical Bayesian network, top-down priors 

represent predictions for level below
• Lowest level: priors are raw data predictions
• For motor modalities, use these “predictions” as motor 

control signals
• Example

– Proprioceptive inputs: joint angle, stiffness
– Motor outputs: desired joint angle, desired stiffness
– Low-level spring-like servo controllers compute actual 

forces



Sensorimotor Belief Network

Bootstrapped Motor Learning
• Must ensure a thorough initial sampling of motor space
• Otherwise, degenerate learned motor representation
• Reflex system: simple random neural network (sensors 

to effectors)
• Initially full reflex-based control, smoothly transition to 

voluntary control





Sequential Memory

• Brain inspiration: hippocampus
• Makes sequential predictions
• “Dynamic reconstruction” – learning to model and predict 

complex temporal signals
• Models short-term memory trace with tapped delay line array
• Supervised learning neural network predictor
• Provides prior distribution to multimodal root node in 

Bayesian network







Serial Decision Maker

• Brain inspiration: basal ganglia
• Learns context-dependent value
• Learns context-dependent actions
• Chooses from motor actions, working memory actions
• Uses PVLV (primary value learned value) model of 

midbrain dopamine activity
• “Dopamine” signal reinforces action selection







Parallel Decision Memory

• Brain inspiration: cerebellum
• Essentially same inputs/outputs as Serial Decision Maker
• Automates Serial Decision Maker’s actions, freeing it to 

focus on novel tasks
• Storage area for well-learned decisions
• Supervised learning neural networks
• Parallel outputs drive multiple targets simultaneously
• Video: computational model of cerebellum learns to 

automate parallel muscle control 
http://video.google.com/videoplay?docid=3602661334569424179







Working Memory

• Brain inspiration: prefrontal cortex
• Temporary data storage
• Discrete set of memory cells
• Working memory actions: read/write
• Read: let contents influence other components
• Write: update contents with new values
• Reinforcement learning of working memory control
• Feedback loop with Serial Decision Maker: powerful 

mechanism for general program learning





Completed Work

• Complete, implementable architecture design
• Initial architecture implementation

– C++ library w/ Python bindings for Linux, OS X, Windows
– Built-in CPU utilization measurements
– Automatic thread-based parallelization

• Real-time probe tool
• Simulation environment for experimentation
• Over 1 MB of source code (uncompressed text files)



Completed Work

Algorithm Test Programs



Completed Work

Real-Time Probe

• Probe tool runs in parallel with 
any application

• Real-time plots of many 
internal variables (information 
theoretic values, CPU 
utilization, etc.)

• Visualization of learned internal 
representations

• Tight experimental feedback 
loop – watch internal changes 
in real-time while interacting 
with the system



Completed Work

Simulation Environment
• 24 degree-of-freedom arm
• Shoulder fixed in space
• Proprioceptive sensors (joint 

angle, stiffness)
• Tactile sensors
• Vision sensor (monocular, 

monochrome)
• Servo motors (controls desired 

joint angle, stiffness; 1 per DOF)
• Adjustable sensor resolution 

(input dimensionality)
• Demo: arm simulation w/ probe



Completed Work

CPU Timing Test

• 32x32 visual inputs
• 42 proprioceptive inputs
• 42 motor outputs
• Target: update @ 10 Hz
• Result: <50ms needed 

per update
• Each second: 500ms for 

Sapience, 500ms for 
simulation



Proposed Experiment 1

Passive Information Gain
• Question: With no active motor control (reflexes only), 

what is the baseline expected rate of information gain?
• Vision inputs only
• Arm driven by external reflex system
• Plot info gain over time (model improvement rate)
• Many other possible plots:

– With vs. without hierarchy
– More vs. fewer kernels
– Lower vs. higher resolution vision



Proposed Experiment 2

Active Information Gain
• Question: How much does curiosity help? i.e., with active 

curiosity-driven motor control enabled, by how much does 
the rate of information gain increase?

• Vision inputs, proprioceptive inputs, motor outputs
• Similar setup as before, but transition from reflex control to 

full active control
• Reinforcements: internal curiosity rewards for model 

improvements
• Plot info gain over time (should be greater than passive 

observation)



Proposed Experiment 3

External Reward Acquisition
• Question: Can the system reliably 

learn to achieve externally-
provided goals in a high-
dimensional sensorimotor space?

• Reaching task: target hand 
positions in space

• Internal curiosity rewards
• External rewards for touching 

targets
• Measure progress as the reward 

acquisition rate over time
• Performance with curiosity should 

be better than without

Prior work: curiosity helps acquire 
more external rewards


