Design and Implementation of General Purpose Reinforcement Learning Agents

Human Computer Interaction

Tyler Streeter

November 17, 2005

Human Computer Interaction

Motivation

Intelligent agents are becoming increasingly important.

IOWA STATE UNIVERSITY of science and technology

Human Computer Interaction

Motivation

- Most intelligent agents today are designed for very specific tasks.
- Ideally, agents could be reused for many tasks.
- Goal: provide a general purpose agent implementation.
- Reinforcement learning provides practical algorithms.

Initial Work

Humanoid motor control through neuroevolution (i.e. controlling physically simulated characters with neural networks optimized with genetic algorithms) (videos)

What is Reinforcement Learning?

- Learning how to behave in order to maximize a numerical reward signal
- Very general: almost any problem can be formulated as a reinforcement learning problem

Basic RL Agent Implementation

- Main components:
 - Value function: maps states to "values"
 - Policy: maps states to actions
- State representation converts observations to features (allows linear function approximation methods for value function and policy)
- Temporal difference (TD) prediction errors train value function and policy

RBF State Representation

Temporal Difference Learning

- Learning to predict the difference in value between successive time steps.
- Compute TD error: $\delta_t = r_t + \gamma V(s_{t+1}) V(s_t)$
- Train value function: $V(s_t) \leftarrow V(s_t) + \eta \delta_t$
- Train policy by adjusting action probabilities

Biological Inspiration

- Biological brains: the proof of concept that intelligence actually works.
- Midbrain dopamine neuron activity is very similar to temporal difference errors.

Figure from Suri, R.E. (2002). TD Models of Reward Predictive Responses in Dopamine Neurons. *Neural Networks*, 15:523-533.

OF SCIENCE AND TECHNOLOGY

Internal Predictive Model

An accurate predictive model can temporarily replace actual experience from the environment.

Training a Predictive Model

- Given the previous observation and action, the predictive model tries to predict the current observation and reward.
- Training signals are computed from the error between actual and predicted information.

OF SCIENCE AND TECHNOLOGY

- Reinforcement learning from simulated experiences.
- Planning sequences end when uncertainty is too high.

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Curiosity Rewards

- Intrinsic drive to explore unfamiliar states.
- Provide extra rewards proportional to uncertainty.

Human Computer Interaction

Verve

- Verve is an Open Source implementation of curious, planning reinforcement learning agents.
- Intended to be an out-of-the-box solution, e.g. for game development or robotics.
- Distributed as a cross-platform library written in C++.
- Agents can be saved to and loaded from XML files.
- Includes Python bindings.

http://verve-agents.sourceforge.net

1D Hot Plate Task

Trial

1D Signaled Hot Plate Task

Trial

2D Hot Plate Task

Trial

Discrete Inputs

300

Trial

400

500

2D Maze Task #1

OF SCIENCE AND TECHNOLOGY

2D Maze Task #2

Pendulum Swing-Up Task

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Pendulum Neural Networks

Cart-Pole/Inverted Pendulum Task

Curiosity Task

Trial

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Future Work

- More applications (real robots, game development, interactive training)
- Hierarchies of motor programs
 - Constructed from low-level primitive actions
 - High-level planning
 - High-level exploration

