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Motivation

Intelligent agents are becoming increasingly important.
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Motivation

Most intelligent agents today are designed for very specific tasks.
|deally, agents could be reused for many tasks.

Goal: provide a general purpose agent implementation.
Reinforcement learning provides practical algorithms.
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Humanoid motor
control through
neuroevolution (i.e.
controlling physically
simulated characters
with neural networks
optimized with
genetic algorithms)
(videos)

Human Computer Interaction

Initial Work
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What is Reinforcement Learning?

Learning how to
behave in order to
maximize a numerical
reward signal

Very general: almost
any problem can be
formulated as a
reinforcement
learning problem
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Basic RL Agent Implementation

Main components: Reinforcement Learning Agent
— Value function: maps
states to “values” State Policy
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RBF State Representation
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Temporal Difference Learning

Learning to predict the difference in value between successive time steps.
Compute TD error: &, = r; + yV(S;,4) - V(Sy)
Train value function: V(s;) < V(s;) + né;
Train policy by adjusting action probabilities

Reinforcement Learning Agent

Observation
(time t)

L1000

State
Representation

Policy

Action
(time t)

L]

Value

Reward
(time t)

L]

Function

.|

Estimated
Value

L

Compute
) TD Error <

[OWA STATE UNIVERSITY



Biological Inspiration

Biological brains: the proof of

concept that intelligence actually Reward Prediction Dopamine Neuron
WO rk S Error Activity
Midbrain dopamine neuron activity .
is very similar to temporal jeaming —
difference errors. ‘ e y
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Internal Predictive Model

An accurate predictive model can temporarily replace actual experience
from the environment.
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Training a Predictive Model

Given the previous observation and action, the predictive model tries to predict

the current observation and reward.

Training signals are computed from the error between actual and predicted

information.

Agent in Model Learning Mode
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Planning

Reinforcement learning from simulated experiences.
Planning sequences end when uncertainty is too high.

Agent in Planning Mode
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Curiosity Rewards

» Intrinsic drive to explore unfamiliar states.
« Provide extra rewards proportional to uncertainty.

Curious Agent in Planning Mode
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Verve

Verve is an Open Source
implementation of curious, planning
reinforcement learning agents.

Intended to be an out-of-the-box
solution, e.g. for game development or
robotics.

Distributed as a cross-platform library
written in C++.

Agents can be saved to and loaded from
XML files.

Includes Python bindings.

http://verve-agents.sourceforge.net
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http://verve-agents.sourceforge.net/
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1D Signaled Hot Plate Task
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Steps to Goal
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2D Maze Task #1
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2D Maze Task #2
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Human Computer Interaction

Pendulum Swing-Up Task
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1 | | |
0 50 100 150 200

Trial

R
Tion
IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY




Human Computer Interaction
r
F

Pendulum Neural Networﬂks
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Cart-Pole/lnverted Pendulum Task
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Average MSE
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Planning in Maze #2
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Curiosity Task
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Future Work

* More applications (real robots, game development, interactive
training)
» Hierarchies of motor programs
— Constructed from low-level primitive actions
— High-level planning
— High-level exploration
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