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Abstract
A model of the cerebellum is proposed that explains

cerebellar contributions to motor function and associa-
tive learning. This model is consistent with a wide
range of biological observations and it places the cere-
bellum into a global, integrated network. A computa-
tional model is implemented using Wilson-Cowan style
models, and the capabilities of associative learning and
complex reaching behaviors, using a one armed automa-
ton, are demonstrated. It is shown how the integrated
cerebro-cerebellar model learns to modulate the cortex
to produce specific, expected behaviors and other capa-
bilities attributed to the cerebellum.

1 Introduction
The cerebellum has long attracted and intrigued mod-

elers of neural structures and experimentalists. It is at-
tractive for experimentation, study, and modeling be-
cause of its repetitive, well characterized circuitry, eas-
ily observable impact on behavior, and its responsive-
ness to various sensory stimuli. It is intriguing because
it possesses roughly half the neurons in the brain and it
is implicated in, but not required for, many seemingly
disparate functions, such as associative learning, motor
control, timing of movement initiation, movement ter-
mination, and offloading tasks from the supplementary
motor area[7, 3, 1, 2]. Recently, the cerebellum has been
implicated in cognitive tasks, such as word retrieval[1].

These observations raise many questions. How can
a simple, repetitive circuit participate in so many seem-
ingly disparate functions? Could a single function medi-
ate all of these capabilities? What is its role in the global
brain architecture?

This paper models the cerebellum in the context of the
global brain architecture and proposes a role capable of
explaining many of the disparate functions attributed to
the cerebellum.

2 The Cerebellum in Context
To motivate the model, it is useful to redraw the

cerebro-cerebellar circuit, as in Figure 1, to emphasize
many salient characteristics. First, the motor output of

Fig. 1. Schematic of the internal circuitry of the cerebellum
and the relationships between the cerebellum and other
brain structures. Triangular terminations denote synap-
tic targets. DCN: deep cerebellar nuclei, cf: climbing
fibers, pf: parallel fibers, mf: mossy fibers, Gr: granule
cells, STN: subthalamic nucleus, GPi, GPe: internal
and external segments of the global pallidus, p: parvo-
cellular, m: magnocellular. Color key included above.

the brain is mediated by projections to the spinal cord
emanating from the motor areas of the behavioral cortex1

and the magnocellular neurons of the red nucleus[1].
The red nucleus, in turn, appears to act as a relay for
the excitatory outputs of the deep cerebellar nuclei.

Second, there appears to be two point-to-point, regis-
tered loops involving the projection neurons in the mo-
tor areas of the behavioral cortex. The first can be traced

1Here, the behavioral cortex refers to the frontal lobe. The motor
areas are those receiving afferents from the ventral lateral nucleus of
the thalamus (i.e., the primary motor, premotor, and supplementary
motor areas[1]).



Fig. 2. Semantics of the inputs and output of the cerebellum.

from a neuron in the motor areas to the striatum, through
the direct and indirect pathways of the basal ganglia to
the ventral lateral nucleus of thalamus, and back to the
original neuron. The other loop is from a neuron in the
motor areas through the parvocellular neurons of the red
nucleus to the inferior olive, through a climbing fiber,
Purkinje cell and deep cerebellar nucleus neuron to the
ventral lateral nucleus, and back to the original neuron.
Both of these loops influence cortical activity through
thalamic projections.

Third, the granule cells of the cerebellum receive mas-
sive afferents from the spinal cord, the cranial nerves,
and broad areas of both the behavioral and sensory cor-
tex2 through the pontine nuclei.

3 Proposed Role for the Cerebellum
This paper proposes that the cerebellum’s role is to

drive cortical activity at the statistically expected, nomi-
nally desired level for an organism’s given context. This
context is quite rich and it includes sensory, vestibu-
lar, and proprioceptive information from the spinal cord
and cranial nerves, and the cortical representation of the
behavioral, phenotypic, and environmental state via the
pontine nuclei. As shown in Fig. 2, the context is pre-
sented to the cerebellar granule cells via mossy fibers
and to the Purkinje cells via parallel fibers. Fig. 2 also
shows that the olivary-cerebellar subsystem is modulated
by actual ongoing cortical activity. Section 5 describes
how the cerebellum model uses context and cortical ac-
tivity information to learn the proper output.

Since the cerebellum is a driver of cortical activity
through the thalamus and adjusting its output would
shift the expected activity, an apparent inconsistency ex-
ists. This inconsistency can be resolved by adjusting
the contributions of the other drivers of cortical activ-
ity. These other drivers include cortico-cortical projec-

2The parietal, occipital, and temporal lobes.

tions and basal ganglia outputs conveyed by the thala-
mus. Since cortico-cortical learning is slow and cortico-
cortical afferents partly define the context the cerebel-
lum is mapping, changes in basal ganglia outputs are
the primary means to accommodate cerebellar learning.
The basal ganglia presumably accomplish this through
changes in its cortical and limbic system afferents de-
rived from an organism’s behavioral objectives and in-
teraction with the environment.

In this model, therefore, the cerebellum is responsible
for producing expected cortical activity for a given con-
text and the basal ganglia are responsible for producing
variations on expected behavior, including novel behav-
iors, refinements of movement, etc. As specific behav-
ioral variations become ”expected,” the cerebellum takes
them over. Since both the cerebellum and basal ganglia
project to the VLN and the VLN projects to the cortex,
the cortex cannot distinguish the source of its afferent
activity and is oblivious to this transfer of responsibility.

4 The Model Description and Dynamics
Excluding the basal ganglia, the scope of the model

includes the entire circuit shown in Figure 1. The basal
ganglia outputs, however, are modeled. The neurons are
implemented using Wilson-Cowan type models [8]. If
the firing rate of each neuron in the circuit is represented
as a dimension of a vector, v, then the neural dynamics
are represented as:

v̇ = β(W · v + v0 − v), (1)

where W represents the synaptic weight matrix, v0 rep-
resents the intrinsic firing rates of the neurons, and β is a
constant controlling the rate of change. The intrinsic fir-
ing rates and the weight matrix are provided in Table 1.
As indicated, only the inferior olive and deep cerebellar
nucleus neurons have non-zero intrinsic firing rates and
only the parallel fiber weights are plastic.

The output O is interpreted as the total spinal projec-
tion; this is the sum of cortical and red nucleus magno-
cellular activity.

To mimic the complex, interactive, corrective contri-
butions of the basal ganglia to cortical activity, the basal
ganglia output evolves as follows:

ḃ = γ(D − O), (2)

where γ is a time constant, D is the damped desired out-
put, Ḋ = ζ(d − D), d is the desired output, and ζ is the
damping rate constant. For convenience, the output of
the basal ganglia is treated as excitatory.

The context values are represented as dimensions of
v and are produced by the experimental setup. The con-
text values are damped like D to accommodate binary
contexts.



Table 1. Intrinsic Firing Rates and Connection Weights

Synaptic Weight with Target
# Source v0 1 2 3 4 5 6 7 8
1 Cortex 1.0
2 RNp 1.0
3 RNm

4 IO 0.3 0.3 1.0 1.0
5 PK -2.0 -2.0
6 DCNe 1.0 1.0 1.0
7 DCNi 1.0 1.0
8 TH 1.0
9 BG 1.0

10 Context *
Empty cells have a value of 0
* Modified through learning

5 Cerebellar Learning
In this model, learning only takes place at the parallel

fiber/Purkinje cell synapses. This learning must enable
the cerebellum to drive expected cortical activity using
only ongoing cortical activity as a training signal.

This is achieved using a cerebellar learning mecha-
nism first described by Kenyon, et al. [5, 6]. This mech-
anism assumes that parallel fiber synapses undergo LTD
when coactive with climbing fiber activity and LTP when
active without coincident climbing fiber activity. Since
Purkinje cells (PK) disinhibit inferior olive activity (IO),
as Fig. 2 shows, a negative feedback loop is established.
An increase in IO activity will cause LTD of parallel
fiber synapses. This will result in less IO disinhibition
due to lessened PK activity and IO activity will drop. If
it drops too low, LTP will result in more disinhibition and
IO activity will increase. This mechanism will maintain
IO activity at a stable firing rate, observed to be 1–4 Hz,
where LTP and LTD effects are balanced.

The learning rule for a Purkinje cell can be expressed

ẇj = ηpj(α − ξc), (3)

where wj is the weight of the jth parallel fiber input, η is
the learning rate, pj is the fiber’s activity level, α is the
stable IO firing rate, c is the climbing fiber activity level,
and ξ is a constant to balance c activity with α.

By coupling PK inhibition to the excitatory output of
the deep cerebellar nuclei (DCN), a cortical tracking ca-
pability is established. Assume an initial equilibrium
point where cortical inputs from the red nucleus and dis-
inhibitory inputs from the PK drive the IO at a stable
firing rate and the DCN outputs drive cortical activity
at the expected level for a given situation. If other in-
fluences, such as the basal ganglia, cause an increase in
IO activity, LTD will reduce DCN inhibition while driv-

Fig. 3. Associative learning.

ing the IO to its stable firing rate. This will cause DCN
outputs to increase. Similarly, the DCN outputs will de-
crease with decreased IO activity. In both cases, a new
equilibrium will be established with the cortex driven by
the cerebellum at the expected activity level.

6 Associative Learning
One objective of the model was to explain how a be-

havioral response can be associated with a specific con-
text, such as a specific stimulus. To test whether the
model has this capability, two values were used to in-
dicate two contextual states or contexts: 01 and 10. The
system was constructed with a single cerebellar loop and
initialized to produce a single output of 0 for both con-
texts. Then, for periods of one second each, the two con-
texts were alternately presented.

To learn the association, cortical activity was driven
by the basal ganglia during context 10 to achieve a de-
sired output of 1. For context 01, cortical drivers were
withdrawn. As shown in Fig. 3, the basal ganglia initially
drove cortical activity to produce the desired output. The
cerebellum did not initially contribute at all. The IO ac-
tivity, however, increased significantly, which drove the
learning process. After 50 trials, however, the cerebel-
lum learned to drive the proper cortical activity and the
basal ganglia no longer contributed. Thus, the means to
produce the desired output was effectively shifted from
the basal ganglia to the cerebellum. A new association
was established between context 10 and the desired out-
put of 1. Finally, the IO activity level returned to the
stable firing rate for both contexts after training.

7 Motor Learning
To test motor learning capabilities, Katayama’s arm

model with two joints and six muscles was used [4]. See
Fig. 4. Six cerebellar loops were combined to control the
muscles. The desired output was the combination of mo-



Fig. 4. Arm model with six muscles and a representative
reaching target position.

Fig. 5. Arm muscle commands over five successive reaches of
one second duration.

tor commands necessary to reach each random targets in
a 2D space with minimum jerk trajectories. To illustrate
the challenge, the required muscle commands for five
successive reaches are shown in Fig. 5. A six dimen-
sional space was constructed using the joint angles, the
joint velocities, and the target offset. This space was de-
composed using radial basis functions to create the con-
text representation. Finally, the cerebellum was trained
for 80 one second reaches to random target positions.

Fig. 6 shows that the basal ganglia contribution to mo-
tor control diminishes approximately exponentially with
time and that this is made up by the cerebellum. The
bottom trace shows that the movement error does not
get worse as the transfer takes place. After training, the
cerebellum is almost entirely responsible for achieving
minimum jerk trajectories using a multijointed, multi-
muscled arm.

8 Conclusions
A model of the cerebellum has been presented that is

capable of associative learning and motor control. It is

Fig. 6. Exponential transfer of cortical drive activity from
basal ganglia to the cerebellum in learning of complex
movements.

consistent with known biological constraints. The model
depends upon and explains the cerebellum’s relation-
ships with other structures in the brain.

The model also supports a more general interpretation
of the cerebellum’s role. That is, the cerebellum’s role is
to drive the expected, nominally desired cortical activity
for each given situation. Such a capability frees other
brain structures and processes to respond to novel and
refined aspects of behavior. It also enables capabilities
that slower, more expensive processes could not achieve,
such as ballistic movements.

Future work includes more realistically modeling the
information provided by proprioception and the way it is
presented to the cerebellum; and using recursive repre-
sentations to achieve location independence of gesture
execution and learning, and to investigate support for
“cognitive” functions.
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