
 1 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

Proceedings of IDETC/CIE 2006
ASME 2006 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference
September 10-13, 2006, Philadelphia, Pennsylvania, USA

DETC2006-99651

VERVE: A GENERAL PURPOSE OPEN SOURCE REINFORCEMENT LEARNING
TOOLKIT

Tyler Streeter
VR Applications Center
Iowa State University

1620 Howe Hall
Ames, IA 50011

tylerstreeter@gmail.com

James Oliver
VR Applications Center
Iowa State University

1620 Howe Hall
Ames, IA 50011

oliver@iastate.edu

Adrian Sannier
School of Informatics

Arizona State University
PO Box 877705

Tempe, AZ 85287
adrian.sannier@asu.edu

ABSTRACT
 Intelligent agents are becoming increasingly important in

our society in applications as diverse as house cleaning robots,

computer-controlled opponents in video games, unmanned

aerial combat vehicles, entertainment robots, and autonomous

explorers in outer space. However, the broader adoption of

intelligent agents is often hindered by their limited adaptability

to new tasks; when conditions change slightly, agents may

quickly become confused. Additionally, a substantial

engineering effort is required to design an agent for each new

task. This paper presents an adaptable, general purpose

intelligent agent toolkit based on reinforcement learning (RL),

an approach with strong mathematical foundations and

intriguing biological implications. RL algorithms are powerful

because of their generality: agents simply receive a scalar

reward value representing success or failure, which greatly

simplifies the agent design process. Furthermore, these

algorithms can be combined with other techniques (e.g.,

planning from a learned internal model) to improve learning

efficiency. The design and implementation of an open source

RL toolkit is presented here as a step towards the goal of

general purpose agents. Experimental results show learning

performance on several tasks, including two physical control

problems.

1 INTRODUCTION
 Intelligent agents today are primitive compared to human

intelligence. Nevertheless, they are finding uses everywhere.

They help diagnose diseases, they aid in making stock market

predictions, they provide entertainment as physical robots and

as opponents in video games, they perform dangerous military

operations, they handle household chores, they detect credit

card fraud, they explore other planets, and they construct

automobiles.

 Machine intelligence is probably one of the most important

technologies to develop. In general, any human endeavor that

could benefit from additional brain power will benefit from

improved machine intelligence. On a grand scale, having

agents with human-like intelligence would amplify our

progress in any scientific field. On a more personal level, we

could replace the user interfaces on our personal computers

with intelligent assistants that manage menial tasks for us.

 The major problem with current intelligent agents is that

they lack flexibility. They are usually designed to operate

under certain conditions for a specific purpose. This fact

prevents them from adapting to new environments. It also

makes the design process laborious because each agent is

usually created from scratch.

 A fairly new approach is that of creating agents to learn

from direct interaction with their environments. No knowledge

is bestowed from the agent’s creators; everything must be

learned through firsthand experience. This kind of agent must

go through a developmental phase where it spends most of its

time exploring, learning about its world’s predictable

properties. One of the major hypotheses of this approach is

that these agents will be more adaptable and effective at solving

complex problems. We argue here that reinforcement learning

is a practical way to design and implement this type of agent.

 Reinforcement learning (RL) is the problem of choosing

the optimal action in a given situation in order to maximize

future rewards [1]. Figure 1 shows the general situation with a

set of abstract components representing an agent and its

environment. The agent performs a context-dependent action

 2 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

which usually has some effect on the environment. Based on

that action, the environment provides the agent with new

sensory inputs (i.e. an observation) and a reward signal.

Positive reward signals positively reinforce the actions that led

to the rewarding situation, making them more likely to be

performed in the future. Similarly, negative reward signals

make the recent actions less likely to be performed.

Figure 1: A typical RL setup, including an environment that

provides observations and rewards and an agent that
responds with actions.

 RL is a trial-and-error process. The only way for an agent

to improve its performance is to take an action and experience

the resulting reward (or lack thereof). This approach is very

general. Almost any problem can be expressed as an RL

problem as long as the goal can be represented as a scalar

reward value. Thus, algorithms designed to solve RL problems

are applicable to a wide variety of tasks.

 When trying to solve RL problems, a few major problems

arise. If an agent receives a reward after a long sequence of

actions, how does it know which actions to reinforce? For

example, say we are training a dog to roll over on command,

and we reward him only when successfully finishing the task.

The dog must learn to reinforce the initial action of lying down

even though he does not receive a reward until after rolling

over and standing up again. Another problem is that of

knowing when to try new actions and when to choose those

that have been most successful in the past.

 Fortunately, a set of powerful RL algorithms already exist.

They can successfully deal with the problems mentioned above

and more. Combined with other techniques (e.g. function

approximation, planning), the core algorithms can scale to

more complicated problem domains. However, even with the

tools that are available, it is not yet clear which ones are best

and how they should be combined.

 This paper presents a summary of some of the algorithms

available for solving RL problems and shows how they can be

combined effectively to create a general purpose solution. The

ideas discussed here are implemented as an Open Source

software library [2] designed to give application developers a

useful tool for creating intelligent learning agents. This tool

can be applied to a variety of problems, ranging from simple

simulated agents in discrete grid worlds to real robots acting in

the physical world. The implementation and results are

discussed more fully in [3].

 There are existing RL software tools [4, 5, 6] available that

provide general frameworks for experimenting with different

algorithms. Other tools [7] are useful for teaching RL concepts

without having to write software. However, there is still a need

for an “out-of-the-box” solution for non-researchers. Many

developers could use a general purpose learning tool without

needing to understand the underlying complexity. This should

help promote the use of RL algorithms in more diverse

applications.

 The next section discusses reinforcement learning in more

detail. It covers some of the specific challenges involved and

presents a general purpose solution. Section 3 introduces the

Verve software library, an implementation of the ideas

discussed in section 2. Section 4 presents a series of

experiments that test Verve’s effectiveness. Section 5

concludes the paper with a summary and a list of contributions.

2 RL CHALLENGES AND SOLUTIONS
 RL problems present us with several challenges. One

challenge described earlier is known as the “temporal credit

assignment” problem, i.e. deciding which of a sequence of

previous actions led to a reward. A related problem is the

“structural credit assignment problem,” the problem of

knowing which internal parts of the agent need to be

reinforced. This chapter highlights these and other challenges

we face when designing general purpose RL agents. Some of

these challenges are fundamental to the basic functioning of a

reinforcement learner, while others help make the core

algorithms more practical (i.e. scaleable to large state spaces).

We will not cover all possible aspects of the various issues and

algorithms; we will focus on the most pertinent information for

the goals of this paper. For more information, see [1].

 Note that the reward signal does not specify how to make

adjustments to improve behavior; it is simply a coarse

performance evaluation (i.e. success or failure). Essentially,

reinforcements received after performing an action increase the

probability that the action will be repeated.

 Two of the main internal components of most RL agents

are: 1) a value function which maps states to value estimations,

and 2) a policy which maps states to actions [1]. Having the

value function and policy in separate memory structures is

sometimes called an “actor-critic” architecture: the policy is an

“actor” that continually performs actions, and the value

function is part of a “critic” system that reinforces the actor

using prediction errors.

2.1 Temporal Credit Assignment
 While an agent is interacting with its environment, rewards

are usually received discontinuously. The agent might move

 3 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

through hundreds of different states, receiving zero reward,

before finally reaching its goal state where it receives a positive

reward signal. Without a sophisticated way to process rewards,

the agent can only reinforce actions taken immediately before

receiving the reward.

 A more fundamental question is: How does an agent know

which states are more valuable than others when the reward is

actually only present in a single state? One answer is that the

agent must learn the value of each state through direct

experience. There is usually more “value” in being close to the

reward than being far away, both spatially and temporally. This

information is not present in the environment; it must be

learned. Thus, an effective intermediate step in solving an RL

task is to learn a “value function.” A value function (more

specifically, a state value function) is a mapping of states to

values. Given some state, the value function returns the

(usually estimated) value associated with being in that state.

(Another type of value function is an “action value function”

that represents the value of taking an action in a specific state.

Here, we will only focus on state value functions.) The value

function transforms the discontinuous primary reward into a

continuous internal signal. It is helpful to think of the agent

playing the “hot-or-cold” game, where the rewards are “hot.”

The learned value function tells the agent whether it is in a hot

or cold state. At first the value function might be wildly

inaccurate, but it should improve through experience.

 Two main questions arise at this point: 1) how does the

agent learn an accurate value function?, and 2) once the value

function is learned, how should the agent use it?

 It is important to define what we mean by the “value” of a

state. The usual meaning is the expected sum of future

rewards, i.e. how much reward we can expect to receive from

this state forward. Thus, the value of a state is the reward

received at that state plus the sum of rewards that can be

expected after that point. One major problem with this

approach is that the future sum of rewards could be infinitely

large. We can alleviate this by discounting rewards received

farther into the future.

 Assuming we have a complete model of the environment

(including state transitions and rewards), we can search through

all possible states and compute the value of each. Starting at an

initial state, we iterate through every possible action and

compute the next states. From each of those states, we iterate

through every possible action and compute the next states…

(This type of exhaustive branching is similar to how most

computer chess programs operate.) Whenever we find a

reward, we “backup” its value to previous states. This

effectively spreads out the value from the reward to the states

leading up to it.

 But what if we do not have a complete model of the

environment? This is a valid concern. Most of the time we

assume the agent has no initial knowledge of its environment.

Another method for learning a value function is by taking

samples from actual experience. Without any prior knowledge

of its environment, an agent can interact with it directly,

keeping track of the average rewards received after being in

each state.

 The first method described above is called dynamic

programming. It has a strong mathematical foundation, but it

requires a full model of the environment, making it impractical

for agents operating in new territory. The second method is the

Monte Carlo approach. It does not require any kind of

environment model, but it is difficult to use incrementally

(usually all learning updates occur at the end of a long

sequence of events). See [1] for a more complete coverage of

both methods.

 A fairly new method which has some of the benefits of

dynamic programming and Monte Carlo methods is called

temporal difference learning [1]. It does not require an

environment model (though it can still benefit from such a

model), and it can perform incremental updates at every time

step, so it has advantages over both dynamic programming and

Monte Carlo methods. These are necessary requirements in

most on-line learning scenarios where the agent starts with no

knowledge of the world. “Temporal difference” refers to the

fact that the goal is to learn to predict the difference in value

between successive time steps. Agents using temporal

difference learn an estimate from an estimate; they “bootstrap”

the learning process by starting with an initial (usually random)

estimated value function and incrementally improve its

accuracy based on the previous estimate.

 We will now derive the basic equation for one-step

temporal difference learning (i.e. TD(0)). Our initial

assumption is the following:

V(st) = rt + rt+1 + rt+2 + … (2-1)

where V(st) is the value of the current state. We assume that the

value of the current state, st, is equal to the current reward, rt,

plus the rewards received at all times after time t. To avoid the

possibility of an infinite sum of future rewards, we discount

future rewards exponentially with a discounting constant, γ.

This makes the value of immediate rewards greater than the

current value of rewards received later. The following reflects

this change:

V(st) = rt + γrt+1 + γ2rt+2 + γ3rt+3 + … (2-2)

 We can simplify these ideas to get the following form:

V(st) = rt + γV(st+1) (2-3)

In other words…

0 = rt + γV(st+1) - V(st) (2-4)

Of course, this assumes that the value function V is completely

accurate. This will not always be true. When the value

estimation is not correct, we have the following scenario:

 4 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

δt = rt + γV(st+1) - V(st) (2-5)

where δt is the temporal difference (TD) error. This error is

positive when the reward is higher than expected, and it is

negative when the reward is lower than expected. Essentially,

the TD error provides the agent with more informative

feedback than the primary reward signal itself.

 The TD error value can be used to update the value

function to make it more accurate in the future. The following

update equation shows the basic idea:

V(st) ← V(st) + ηvalue δt (2-6)

where ηvalue is the value function learning rate. This equation

updates the value of the current state using the current

prediction error. When the TD error is zero (implying a perfect

value estimation), no changes occur.

 Now that we know how to learn the value function, we can

use it to reinforce actions. More importantly, we can reinforce

actions performed at every step, not just when receiving

rewards. This is achieved by using the same temporal

difference error used to train the value function. If the agent

takes an action, and the following TD error is positive, the

value of the new state is higher than expected, so we positively

reinforce that action. Similarly, we negatively reinforce actions

that result in negative prediction errors. To “reinforce an

action,” we simply adjust the action selection probability of the

previous action in the direction of the error. For example, if

things were better than expected, the positive TD error

increases the previous action’s selection probability.

 Over time the agent’s estimated value function and policy

grow closer to the ideal value function and policy.

Interestingly, the two components depend on each other: the

value of a state is dependent upon the actions being chosen,

and the policy’s actions are reinforced based on the value

function’s estimates.

2.2 Structural Credit Assignment
 Now that we know when to reinforce actions, how do we

know which ones to reinforce? Which structural parts of the

agent’s value function and policy should be affected when there

is a non-zero prediction error? This is known as the “structural

credit assignment” problem.

 The naïve approach is to update the value of the previous

state and reinforce the previously chosen action, i.e. the 1-step

TD(0) method introduced in the previous section. However,

we can do better. Each value estimation and action can use a

separate eligibility trace, e, whose purpose is to track structural

components (e.g. connection weights in a neural network) that

are eligible for modification [1]. They increase when the

corresponding value estimation or action is used, and they

decrease exponentially over time. The assumption is that state

value estimations and actions performed just prior to a non-

zero temporal difference error were most likely to contribute to

that error.

 Each eligibility trace is updated on every time step. The

traces for the current value estimation and action are increased

(e.g. set equal to 1). All other traces are exponentially

decreased as follows:

e(st) ← γλe(st) (2-7)

where λ is a decay constant that ranges from 0 to 1. When TD

errors occur, they are applied to state values and actions in

proportion to their eligibility traces. We use the same TD error

(δt) equation as before, but the value function update equation

now includes eligibility traces. The following shows the new

value function update:

V(st) ← V(st) + ηvalue δte(st) (2-8)

 Temporal difference learning with eligibility traces is

called TD(λ). Theoretically, eligibility traces provide a link

between temporal difference learning and Monte Carlo

methods. When λ = 0 we get the simple one-step TD(0) rule,

but as λ approaches 1, TD(λ) becomes more similar to Monte

Carlo learning since it keeps track of all previous states and

actions. TD(1), however, is more general than Monte Carlo

because it allows incremental learning. The main result we

achieve by using eligibility traces is that we can perform

structural credit assignment more effectively by targeting

specific (structural) parts of the value function and policy when

performing updates.

2.3 Exploration vs. Exploitation
 The exploration vs. exploitation dilemma is the problem of

deciding when to use previous knowledge to guide actions and

when to take exploratory actions, with the hope of finding

something better. There is a definite tradeoff here because both

exploration and exploitation are necessary at times. Early in

the learning process the agent needs to explore to find out

which actions are ideal in different situations. Even “mature”

agents need to explore if they live in constantly-changing

environments. Exploitation is equally essential; an agent that

always takes exploratory (i.e. random) actions will never

improve. Often it is important to use the current best policy.

 Currently there are only a few standard solutions to this

problem. One is the “ε-greedy” method [1]. Most of the time,

the agent chooses its best known action (according to its

learned policy). Every once in a while (with probability ε), it

instead chooses a random action. Another method is the

“softmax” action selection method [1]. Instead of choosing

from among all actions equally during an exploratory move,

softmax methods assign each action a different probability of

being chosen at each state. The best actions are given higher

probabilities than poor actions. These probabilities become the

parameters that are adjusted during policy learning.

 5 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

2.4 Large, Continuous State Spaces
 The methods we have covered up to this point solve RL

problems effectively, but in order for them to be practical in

real situations, they need compact state representations. The

simplest methods assume that each state is represented as a

single entry in a table. This is obviously impractical for agents

operating in large, continuous state spaces. A robot with only

10 continuous sensors, each one discretized into 10 different

values, would require a table of 1010 unique entries (i.e. states).

There are way too many states in this case for the agent to test

and evaluate each one individually.

 The solution to this problem is to represent states more

compactly with function approximation. Instead of keeping

track of each unique state separately, we seek to find a function

that approximates the state space with a small number of

adjustable parameters. The number of parameters is usually

much smaller than the number of unique states. The downside

is that each state is never represented exactly since we are only

approximating the state space. Function approximation also

allows generalization to unseen data. This feature is important

because an agent in a continuous environment will probably

never experience the same exact state twice. Using an

approximate function of the state space, it can sample a few

states and generalize about the rest.

 It is important to note that temporal difference learning

with linear function approximation will provably converge to

the optimal solution. The convergence proofs do have a few

other requirements, such as using a learning rate that decreases

over time (here we use a constant learning rate and do not

worry about achieving the exact optimal solution) and other

assumptions that do not affect the discussion in this paper.

Convergence is still questionable with nonlinear function

approximation, such as backpropagation with multilayer neural

networks. There is only one optimal solution in the linear case,

so we need not worry about converging to local maxima. For

these reasons we will focus our discussion on linear

representations.

 Now the basic problem is to represent the value function

and policy as linear combinations of the states. The problem

with doing this in general is that linear representations, such as

single layer neural networks, are fundamentally limited in what

they can represent. Specifically, they can only represent

problems that are linearly separable. This excludes certain

problems (like the classic XOR problem). See [8] for a more

detailed description of neural networks and linear separability.

One way to get around these limitations and still use

methods like linear neural networks is to augment the state

representation. Instead of learning a linear combination of the

sensory inputs directly, it is better to generate a set of more

complex features that represent various combinations of the

sensory inputs. For example, if all inputs are discrete values,

we could simply enumerate all possible combinations of the

inputs, resulting in an exhaustive list of states.

 In most cases we will have continuous input values (e.g.

readings from thermometers, accelerometers, cameras, etc.). To

form a set of features in continuous state spaces, we can use

radial basis functions (RBFs) [8], which allow localized

learning and some generalization. This method uses a set of

(usually Gaussian-shaped) curves to approximate a function in

any number of dimensions. Each RBF is given a position in

the input space. It responds to input data points based on its

Euclidean distance from the points. The activation function for

Gaussian RBFs is the following:

)
2

(
2

2

σ

ci

ea

−−

= (2-9)

where a is the activation level (between 0 and 1), i is the input

data point, c is the RBF’s center position, and σ is the RBF’s

“width” (i.e. the distance of one standard deviation from the

center). The quantity in the numerator of the exponent

represents the Euclidean distance from the RBF center to the

input data point, which could be in a space of any number of

dimensions. The collective effect of an array of RBFs is

demonstrated in Figure 2. A single continuous value, even in

1-dimensional space, can be represented with an array of RBFs.

In biological systems this is similar to population coding: a

given quantity is encoded in the combination of activation

levels from a population of neurons.

Figure 2: An array of radial basis functions in 2-dimensional
space representing an input data point. Each RBF here is a

separate circle with a diameter proportional to the RBF’s
activation level. (The more distant RBFs would actually

have a near-zero diameter.)

 When representing a continuous value, only a few RBFs

near the value are active. This allows localized learning, which

is important for learning function approximations without

catastrophic interference (i.e. changing a single parameter does

not affect the entire approximation).

 In the general case we can create an exhaustive array of

RBFs that combines all sensory inputs into a single, massive

state representation. Any given point in this space would

represent a unique combination of sensory inputs,

approximated by a set of RBFs in close proximity. Every RBF

 6 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

in this array is essentially a complex feature (e.g. a feature for a

car-driving agent could represent “steering angle = 0.3 deg,

velocity = 105 km/hr, 12 liters of fuel left, 58 km to the next

gas station, 103 m following distance from the car ahead”). If

we had some knowledge of the task being performed, we could

hand-design features to fit the task. We may not need to

combine all sensory inputs; we could just combine those that

are highly dependent, in which case there would be separate

RBF arrays. Since we are designing a general purpose system,

this is not an option: we must combine all sensory inputs. The

main drawback of this approach is that the runtime

performance suffers. Computing the RBF state representation

grows slower exponentially with the number of inputs being

combined because the total number of RBFs is equal to k
n,

where k is a constant, and n is the number of inputs. It might

help to start with the exhaustive representation and later

remove those RBFs representing input combinations that rarely

get used. This may be what occurs in biological brains: we

start out with many more connections than we need, and we

lose connections that rarely get used.

 Figure 3 shows our agent design. It uses an RBF state

representation with linear neural networks for the value

function and policy, which are trained by the TD error signal.

Figure 3: An agent that processes incoming observations
into an internal state representation which provides more

informative features. This agent uses linear neural
networks to represent the value function and policy, which

are trained by the TD error signal.

3 IMPLEMENTATION
 Now we will compile many of the ideas from the previous

section into a concrete software implementation. The goal here

is to provide a practical tool for use in real applications. Its

main intended users include engineers, roboticists, and game

developers that need an out-of-the-box solution for their

learning tasks. This tool, available online [2], is distributed as

a free, Open Source software library, which provides several

benefits: 1) the “free” aspect will help the software circulate

faster and gain more exposure, and 2) the Open Source aspect

enables users to study a concrete RL implementation in detail.

It also functions as a platform for future research. For

example, future work includes hierarchical data structures for

states and actions (to improve scalability) and curiosity-driven

exploration.

3.1 The Verve Library
 Verve is a cross-platform, object-oriented library written in

C++. It is built as a shared library (i.e. a “.dll” file in Windows,

or a “.so” file in UNIX). It is organized as a set of classes, the

main one being the Agent class. The source code itself is

heavily commented and unit tested. The downloadable

distribution includes Python bindings and a set of example

applications that validate the library’s usefulness and provide

example source code.

 Typically, users create an AgentDescriptor object, which

describes the general structure of an Agent, and set its various

parameters (e.g. number of sensors, number of actions, sensor

resolution, whether planning is enabled, etc.). Then they create

an Agent object from the AgentDescriptor. Another way to

create an Agent is by loading a saved Agent from an XML file.

 Saving and loading Agents to and from XML files

provides several benefits. Potentially long training sessions

(lasting several days) can be saved at regular intervals to

protect against power failures. Also, once an Agent has

reached a desirable level of proficiency (i.e. has finished its

training phase), it can be stored for practical use. In this case it

can be helpful to disable learning once training is complete.

This saves computational resources because the entire learning

system is ignored (only the policy is used), and it enables more

repeatable behavior.

 To increase immediate usability, all free parameters use

default values that were found experimentally to be useful in a

variety of learning tasks. Adjusting some parameters manually

may improve learning performance, but this effect is more

noticeable on simpler tasks that do not require much

exploration.

 Most of the features of this library are designed to solve

the problems introduced in the previous section. The general

architecture is same as the one developed above. The value

function and policy are stored as separate data structures (i.e.

an actor-critic architecture) approximated with linear neural

networks and are trained through temporal difference learning.

The state representation uses a dynamically-growing RBF

system to combine sensory inputs. Actions are chosen using a

roulette/softmax action selection scheme which maintains

separate selection probabilities for each action. Agents can use

any number of discrete and continuous sensors (discrete

sensors take an index representing one of several distinct

values, and continuous sensors take any real value between -1

and 1). Additionally, Verve agents incorporate more advanced

features described in [3], including an internal uncertainty

estimation, a learned predictive model for planning, and a

curiosity drive to help improve the predictive model.

 7 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

 One interesting detail is that a few free parameters are

specified as time constants. This stems from the fact that

Agents are updated in real time (i.e. each update step takes a

time delta that specifies how much time has elapsed since the

previous update). The usual way of setting a neural network

learning rate parameter, for example, is by using a constant

value that affects how far each weight is adjusted per update.

A learning rate of 0.1 attempts to reduce the overall error by

10% per update. However, since each update in our case

represents a certain amount of real time, we would rather let

users set how much error is reduced per second. Time

constants let us specify how long it takes (in seconds) for errors

to be reduced by 63%. For example, a learning rate time

constant of 0.1 s attempts to reduce errors to 37% of their

initial values after 0.1 s, regardless of size of the Agent update

time delta.

 For more specific details on the implementation (e.g.,

neural network learning rules), including the advanced

functionality not described in this paper (e.g., planning with

learned predictive models, curiosity), see [3].

3.2 A Code Sample
 This section shows C++ source code for a generic Agent

training application. The purpose of this is to give a tangible

example of how Verve Agents are used in practice. The first

section of the code here defines an AgentDescriptor and creates

an Agent and an Observation from the AgentDescriptor. The

second part is a loop that continually computes the current

Observation and reward, updates the Agent, and applies the

Agent’s chosen action to the environment.

// Define an AgentDescriptor.

verve::AgentDescriptor agentDesc;

agentDesc.addDiscreteSensor(4); // Use 4 possible values.

agentDesc.addContinuousSensor();

agentDesc.addContinuousSensor();

agentDesc.setContinuousSensorResolution(10);

agentDesc.setNumOutputs(3); // Use 3 actions.

// Create the Agent and an Observation initialized

// to fit this Agent.

verve::Agent agent(agentDesc);

verve::Observation obs;

obs.init(agent);

// Set the initial state of the world.

initEnvironment();

// Loop forever (or until some desired learning

// performance is achieved).

while (1)

{

 // Set the Agent and environment update

 // rate to 10 Hz.

 verve::real dt = 0.1;

 // Update the Observation based on the current

 // state of the world. Each sensor is

 // accessed via an index.

 obs.setDiscreteValue(0, computeDiscreteInput());

 obs.setContinuousValue(0, computeContinuousInput0());

 obs.setContinuousValue(1, computeContinuousInput1());

 // Compute the current reward, which is

 // application-dependent.

 verve::real reward = computeReward();

 // Update the Agent with the Observation and reward.

 unsigned int action = agent.update(reward, obs, dt);

 // Apply the chosen action to the environment.

 switch(action)

 {

 case 0:

 performAction0();

 break;

 case 1:

 performAction1();

 break;

 case 2:

 performAction2();

 break;

 default:

 break;

 }

 // Simulate the environment ahead by 'dt' seconds.

 updateEnvironment(dt);

}

4 EXPERIMENTAL RESULTS
 Here we provide a set of experimental results. The

purpose of these experiments is to validate Verve’s

effectiveness in a variety of tasks and to demonstrate some of

the tradeoffs involved in practice. We test agents in a simple

discrete maze environment and on two continuous control

tasks: the pendulum swing-up task and the cart-pole/inverted

pendulum task. In each case the task is specified simply by

giving the agent a scalar reward value. The control policies are

learned automatically.

4.1 2D Maze Task
 This task tests an agent in a simple 2D maze environment

(see Figure 4). There is a single start state and goal state which

are always in the same locations. The agent receives -1 reward

everywhere except the goal state where it receives a reward of

1. It can sense the robot’s x and y position, and it can move

left, right, up, down, or do nothing. Additionally, the agent

cannot cross interior wall boundaries. The experiment was run

twice: once using discrete sensors, and once using continuous

(i.e. radial basis function) sensors. Figure 5 shows the agent’s

learning performance.

Figure 4: The layout of the environment in the 2D maze #1

task.

 8 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

Figure 5: Learning performance on the 2D maze #1 task

using the following parameters: policy learning multiplier =
1, position input discretization (for discrete inputs plot

only) = 10, continuous sensor resolution (for continuous
inputs plot only) = 15, number of runs averaged = 50.

 Figure 6 shows the agent’s learned value function over

time. These images represent the agent’s learned value of each

state. (Lighter areas correspond to places that are more

valueable to the agent.) In both the discrete and continuous

cases it is easy to see the structure of the maze (especially the

wall barrier) in the final value function images.

Figure 6: Learned value functions observed at the end of
the 2

nd
, 5

th
, 10

th
, and 100

th
 trials of the 2D maze #1 task,

tested with discrete (top) and continuous (bottom) sensors.
The following parameters were used: policy learning

multiplier = 1, position input discretization (for the discrete
sensors) = 10, continuous sensor resolution (for the

continuous sensors) = 15.

4.2 Physical Control Tasks
 We now cover results from two physical control tasks. The

agents here must learn to apply appropriate forces in order to

control physically simulated systems. The core physics

simulation software used here is Open Dynamics Engine [9].

To simplify the process of constructing physically simulated

environments, we used Open Physics Abstraction Layer [10].

OPAL wraps ODE with a high-level interface and provides

developers with intuitive objects (e.g. solids, joints, motors,

and sensors) and XML serialization. Although the experiments

in this section use very minimal physical environments, OPAL

and ODE are powerful enough to manage complex worlds with

expansive terrains, ground and air vehicles, legged robots, etc.

 All experiments here were simulated with gravity set to

9.81 m/s2. One of the more important parameters that must be

set when running a physics simulation is the duration of each

simulation step (i.e. the simulation step size). This should

always be smaller than the Verve agent update step size. This

is because the agent will expect the environment to have

changed before each update. If the physics step size were

larger than the agent’s step size, the agent would choose an

action, and its next observation would be identical to the

previous one.

 4.2.1 Pendulum Swing-Up The pendulum swing-up

task is one of the classic control problems used to test learning

systems. The problem is that of getting a freely-swinging

pendulum to hold itself upright and stay balanced (see Figure

7). The agent receives a reward of 1 when the pendulum is

within 45 deg of vertical; otherwise, it receives a reward of -1.

It has two continuous input sensors: the pendulum angle, and

the pendulum angular velocity. It has three actions: apply a

constant torque in one direction, apply a constant torque in the

other direction, or do nothing. The pendulum is underactuated,

so the agent must learn to swing it back and forth to build

momentum in order to reach the top. It must stop applying

force at just the right time (or apply an opposing force before

reaching the top) to avoid overshooting the goal. Each trial

lasts 20 s. At the start of each new trial, the pendulum is given

a random angle and angular velocity. This helps the agent

experience more of the state space faster.

Figure 7: A physically simulated pendulum suspended in

midair.

 Figure 8 shows the agent’s learning performance on the

pendulum swing-up task. It reaches nearly optimal

performance in about 60 trials.

 9 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

Figure 8: Learning performance on the pendulum swing-up

task using the following parameters: physics step size =
0.01 s, agent step size = 0.1 s, pendulum mass = 1.0 kg,

pendulum length = 1.0 m, ODE solver = "quickstep" (with 20
iterations per step), pendulum angle range = +/- 180 deg,

pendulum angular velocity range = +/- 500 deg/s, pendulum
torque range = +/- 2 N·m, continuous sensor resolution =
16, τvalue= 0.01 s, policy learning multiplier = 2, number of

runs averaged = 10.

 Figure 9 shows the (rather interesting) value functions

learned over the course of a single run. Note that the agent’s

continuous sensor for the pendulum angle is circular because

the angle can jump directly from -180 to 180 and vice versa.

This means that the value function images would be more

realistic if we wrapped them around a cylinder to join the ends

of the input range.

Figure 9: Learned value functions observed at the end of
the 1

st
, 5

th
, 20

th
, and 100

th
 trials of the pendulum swing-up

task. The horizontal axis in each image is the pendulum's
angle (i.e. the angle between the pendulum and vertical),

whose range is +/- 180 deg and wraps directly from -180 to
180. The vertical axis is the pendulum's angular velocity in

deg/s which ranges from -500 to 500 deg/s. This agent
used the same parameters as in the pendulum learning

performance plot.

 Finally, Figure 10 shows the value function and policy

neural networks before and after learning. The connection

weights display distinguishable patterns that correspond to the

actual state space. The center region of the connection weights

contains mainly positive connections leading to the value

function neuron, indicating a high value estimation for those

states.

Figure 10: A visual representation of the pendulum agent's
neural networks before (left) and after (right) learning. The

neurons on the left side of each image are the state
representation. The neurons on the top right represent the

policy's three actions. The neuron on the bottom right
represents the value function. Green connections are

excitatory (positive); red connections are inhibitory
(negative). Thicker connections have a larger weight

magnitude.

 4.2.2 Cart-Pole/Inverted Pendulum This task, known

as the cart-pole task or the inverted pendulum task, is another

classic learning problem. The problem is that of learning to

balance a pole attached to a cart by applying forces to the cart

alone (see Figure 11). If the cart position is beyond one end of

the track, or if the pole falls beyond some threshold angle, the

agent is given a -1 reward; otherwise, it is given a reward of 1

on every step. It has four continuous input sensors: the cart

position, the cart velocity, the pole angle, and the pole angular

velocity. It has three actions: apply a constant force to the left

left, apply a constant force to the right, or do nothing. A

common goal for this task is to achieve a balancing time of 30

min (1800 s).

Figure 11: A physically simulated cart with an attached pole

situated on a platform.

 10 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

 Figure 12 shows the learning performance of a single

typical run. Once the important parts of the state space have

been fully explored, failures become very sparse, leading to a

roughly exponential increase in learning performance.

Figure 12: Typical learning performance for a single run of
the cart-pole task using the following parameters: physics
step size = 0.01 s, agent step size = 0.05 s, cart mass = 1.0
kg, pole mass = 0.1 kg, pole length = 1.0 m, coefficient of
(static and kinetic) friction between cart and ground = 0,

ODE solver = "quickstep" (with 20 iterations per step), cart
x position range = +/- 2.4 m, cart x velocity range = +/- 2.4
m/s, pole angle range = +/- 12 deg, pole angular velocity

range = +/- 100 deg/s, cart force range = +/- 10 N,
continuous sensor resolution = 8, τvalue = 0.001 s, policy

learning multiplier = 50.

5 CONCLUSIONS
 This paper has discussed some of the key issues involved

in designing general purpose RL agents. The result of this

discussion was an agent design that uses temporal difference

learning and an RBF state representation. After that we

introduced the Open Source library Verve, a C++

implementation of the agent designed here. Finally, we showed

results from several experiments that validate the library’s

effectiveness.

 There are several limitations in the current implementation

which will be addressed in future work. The main limitation is

that the computational space and time requirements grow

exponentially with the number of inputs. This is mainly due to

the exhaustive state representation that combines all inputs into

a higher level representation. This might be solved by using

modular hierarchical policies, allowing agents to operate on

low- and high-level sensory inputs and actions.

Another limitation is that the agents learn to select from a

finite number of actions, but they do not learn continuous

control signals. The action set must be predefined by the user.

Future implementations will autonomously learn continuous

action signals instead of simply acting as a switching system.

 A third limitation is that the agents have no temporal state

representation, so they cannot predict future events at specific

times. One possible solution is to use a tapped delay line

scheme [8], enabling the agents to learn temporal correlations

between events.

An avenue of investigation currently underway is

curiosity-driven exploration [11, 12, 13], a topic related to the

field of developmental robotics. Rather than rely solely upon

random action selection, an intrinsic curiosity drive can

motivate agents to explore “interesting” parts of the state space.

This trains predictive models (used for planning) more

efficiently. Such curious agents decide for themselves which

situations are worth exploring.

The open-endedness of the Verve library makes it

applicable to a wide variety of tasks. Virtual characters in

computer simulations (e.g., video games, virtual reality training

scenarios) could learn to animate themselves. User interfaces

for personal computing devices could adapt themselves through

trial-and-error learning. Agents controlling real machines (e.g.,

mobile robots, unmanned aerial vehicles) could train

themselves with minimal human teaching. These agents could

even learn primarily in simulations before being transferred to

physical robots, making the training process cheaper, safer, and

faster. Any problem that can be formulated as an RL problem

is a potential application for Verve agents.

It is hoped that this work will help spread reinforcement

learning research to new audiences and add value to the field in

general.

ACKNOWLEDGMENTS
This work was partially supported by a grant from the Air

Force Office of Scientific Research.

REFERENCES
1. Sutton, R.S. & Barto, A.G. (1998). Reinforcement

Learning: An Introduction. MIT Press, Cambridge, MA.

2. Verve project website. http://verve-agents.sourceforge.net

(accessed 2-5-06).

3. Streeter, T. (2005). Design and Implementation of General

Purpose Reinforcement Learning Agents. Unpublished

Master’s Thesis, Iowa State University.

4. RL Toolkit project website.

http://rlai.cs.ualberta.ca/RLAI/RLtoolkit/RLtoolkit1.0.html

(accessed 2-5-06).

5. Reinforcement Learning Toolbox project website.

http://www.igi.tugraz.at/ril-toolbox/general/overview.html

(accessed 2-5-06).

6. PIQLE: a Platform Implementing Q-LEarning algorithms

in JAVA project website.

http://www.lifl.fr/~decomite/piqle/index.html (accessed 2-

5-06).

7. SALSA (System using Artificial Life to Study Adaptation)

project website. http://www.cs.indiana.edu/~gasser/Salsa

(accessed 2-5-06).

8. Haykin, S. (1999). Neural Networks: A Comprehensive

 11 Copyright © Tyler Edward Streeter, 2006. All rights reserved.

Foundation, 2
nd

 Edition. Prentice-Hall.

9. Open Dynamics Engine project website.

http://www.ode.org (accessed 2-5-06).

10. Open Physics Abstraction Layer project website.

http://opal.sourceforge.net (accessed 2-5-06).

11. Oudeyer, P.-Y., and Kaplan, F. 2004. Intelligent adaptive

curiosity: a source of self-development. In Berthouze, L.,

et al, eds., Proceedings of the 4th International Workshop

on Epigenetic Robotics, volume 117, 127-130. Lund

University Cognitive Studies.

12. Schmidhuber, J. 1991. Curious model-building control

systems. In Proceedings of the International Joint

Conference on Neural Networks, vol. 2, 1458-1463. IEEE.

13. Streeter, T. 2006. Curiosity-Driven Exploration with

Planning Trajectories. In Proceedings of the Twenty-First

National Conference on Artificial Intelligence (to appear).

