
Verve: A General Purpose
Open Source

Reinforcement Learning
Toolkit

Tyler Streeter, James Oliver, & Adrian Sannier

ASME IDETC & CIE, September 13, 2006

Motivation
Intelligent agents are becoming increasingly important.

Motivation
• Most intelligent agents today are carefully designed

for very specific tasks
• Ideally, we could avoid a lot of work by letting the

agents train themselves
• Goal: provide a general purpose agent

implementation based on reinforcement learning
• Target audience: Application developers (especially

roboticists and game developers)

Reinforcement Learning
• Learning how to

behave in order
to maximize a
numerical reward
signal

• Very general: lots
of real-world
problems can be
formulated as
reinforcement
learning
problems

Reinforcement Learning
• Typical challenges:

– Temporal credit assignment
– Structural credit assignment
– Exploration vs. exploitation
– Continuous state spaces

• Solutions:
– TD learning with value function and policy represented

as single-layer neural networks
– Eligibility traces for connection weights
– Softmax action selection
– Function approximation with Gaussian radial basis

functions

RL Agent Implementation
• Value function: maps

states to “values”
• Policy: maps states to

actions
• State representation

converts observations
to features (allows
linear function
approximation
methods for value
function and policy)

• Temporal difference
(TD) prediction errors
train value function
and policy

RBF State Representation

Verve Software Library
• Cross-platform library written in C++ with

Python bindings
• License: BSD or LGPL
• Unit tested, heavily-commented source

code
• Complete API documentation
• Widely applicable: user-defined sensors,

actuators, sensor resolution, and reward
function

• Optimized to reduce computational
requirements (e.g., dynamically-growing
RBF array)

http://verve-agents.sourceforge.net

http://verve-agents.sourceforge.net/

Free Parameters
• Inputs

– Number of sensors
– Choice of discrete or continuous (RBF)
– Continuous sensor resolution
– Circular continuous sensors

• Number of outputs
• Reward function
• Agent update rate (step size)
• Learning rates
• Eligibility trace decay time constant
• Reward discounting time constant

C++ Code Sample (1/3)
// Define an AgentDescriptor.
verve::AgentDescriptor agentDesc;
agentDesc.addDiscreteSensor(4); // Use 4 possible values.
agentDesc.addContinuousSensor();
agentDesc.addContinuousSensor();
agentDesc.setContinuousSensorResolution(10);
agentDesc.setNumOutputs(3); // Use 3 actions.

// Create the Agent and an Observation initialized to fit this Agent.
verve::Agent agent(agentDesc);
verve::Observation obs;
obs.init(agent);

// Set the initial state of the world.
initEnvironment();

C++ Code Sample (2/3)
// Loop forever (or until some desired learning performance is achieved).
while (1)
{

// Set the Agent and environment update rate to 10 Hz.
verve::real dt = 0.1;

// Update the Observation based on the current state of the world.
// Each sensor is accessed via an index.
obs.setDiscreteValue(0, computeDiscreteInput());
obs.setContinuousValue(0, computeContinuousInput0());
obs.setContinuousValue(1, computeContinuousInput1());

// Compute the current reward, which is application-dependent.
verve::real reward = computeReward();

// Update the Agent with the Observation and reward.
unsigned int action = agent.update(reward, obs, dt);

C++ Code Sample (3/3)
// Apply the chosen action to the environment.
switch(action)
{

case 0:
performAction0();
break;

case 1:
performAction1();
break;

case 2:
performAction2();
break;

default:
break;

}

// Simulate the environment ahead by 'dt' seconds.
updateEnvironment(dt);

}

Examples
• 2D Maze

• Pendulum swing-up

• Cart-pole/inverted pendulum

2D Maze Task

Pendulum Swing-Up Task

Pendulum Neural Networks

Cart-Pole/Inverted Pendulum
Task

Experimental Feature -
Planning

• Planning: training the
value function and
policy from a learned
model of the
environment (i.e.
reinforcement learning
from simulated
experiences)

• Reduces training time
significantly

2D Maze Task with Planning

Experimental Feature -
Curiosity

• Curiosity: an intrinsic
drive to explore
unfamiliar states

• Provide extra rewards
proportional to
uncertainty or “learning
progress”

• Drives agents to
improve mental models
of the environment
(used for planning)

Multiple Rewards Task with Curiosity

Future Work
• The exhaustive RBF state representation is too slow

for high-dimensional state spaces. Possible solutions:
dimensionality reduction (e.g., using PCA or ICA),
hierarchical state and action representations, and
focused attention

• Temporal state representation (e.g., tapped delay
lines)

	Verve: A General Purpose Open Source�Reinforcement Learning Toolkit
	Motivation
	Motivation
	Reinforcement Learning
	Reinforcement Learning
	RL Agent Implementation
	RBF State Representation
	Verve Software Library
	Free Parameters
	C++ Code Sample (1/3)
	C++ Code Sample (2/3)
	C++ Code Sample (3/3)
	Examples
	2D Maze Task
	Pendulum Swing-Up Task
	Pendulum Neural Networks
	Cart-Pole/Inverted Pendulum Task
	Experimental Feature - Planning
	Experimental Feature - Curiosity
	Future Work

