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Motivation

Intelligent agents are becoming increasingly important.

Automatically cleans your floors
while you enjoy life!
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Motivation

Most intelligent agents today are carefully designed
for very specific tasks

|deally, we could avoid a lot of work by letting the
agents train themselves

Goal: provide a general purpose agent
implementation based on reinforcement learning

Target audience: Application developers (especially
roboticists and game developers)
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Learning how to
behave in order
to maximize a
numerical reward
signal

Very general: lots
of real-world
problems can be
formulated as
reinforcement
learning
problems
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~  Reinforcement Learning

« Typical challenges:
— Temporal credit assignment
— Structural credit assignment
— Exploration vs. exploitation
— Continuous state spaces

 Solutions:

— TD learning with value function and policy represented
as single-layer neural networks

— Eligibility traces for connection weights
— Softmax action selection

— Function approximation with Gaussian radial basis
functions
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Value function: maps
states to “values”

Policy: maps states to
actions

State representation
converts observations
to features (allows
linear function
approximation
methods for value
function and policy)

Temporal difference
(TD) prediction errors
train value function
and policy
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'RBF State Representation
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" Verve Software Library

» Cross-platform library written in C++ with
Python bindings
« License: BSD or LGPL

« Unit tested, heavily-commented source
code

 Complete APl documentation

« Widely applicable: user-defined sensors,
actuators, sensor resolution, and reward
function

» Optimized to reduce computational
requirements (e.g., dynamically-growing
RBF array)
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http://verve-agents.sourceforge.net/

Free Parameters

Inputs

— Number of sensors

— Choice of discrete or continuous (RBF)
— Continuous sensor resolution

— Circular continuous sensors

Number of outputs

Reward function

Agent update rate (step size)
Learning rates

Eligibility trace decay time constant
Reward discounting time constant
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/I Define an AgentDescriptor.

verve::AgentDescriptor agentDesc;
agentDesc.addDiscreteSensor(4); // Use 4 possible values.
agentDesc.addContinuousSensor();
agentDesc.addContinuousSensor();
agentDesc.setContinuousSensorResolution(10);
agentDesc.setNumOutputs(3); // Use 3 actions.

// Create the Agent and an Observation initialized to fit this Agent.
verve::Agent agent(agentDesc);

verve::Observation obs;

obs.init(agent);

/| Set the initial state of the world.
initEnvironment();
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C++ Code Sample (2/3)

/I Loop forever (or until some desired learning performance is achieved).
while (1)
{

I/l Set the Agent and environment update rate to 10 Hz.

verve:real dt =0.1;

/l Update the Observation based on the current state of the world.
// Each sensor is accessed via an index.

obs.setDiscreteValue(0, computeDiscretelnput());
obs.setContinuousValue(0, computeContinuousinputQ());
obs.setContinuousValue(1, computeContinuousinput1());

/[ Compute the current reward, which is application-dependent.
verve::real reward = computeReward();

/l Update the Agent with the Observation and reward.
unsigned int action = agent.update(reward, obs, dt);
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““  C++ Code Sample (3/3)

/I Apply the chosen action to the environment.

switch(action)
{
case O:
performAction0();
break;
case 1:
performAction1();
break;
case 2:
performAction2();
break;
default:
break;
}

// Simulate the environment ahead by 'dt' seconds.
updateEnvironment(dt);
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Examples

[roen]
i

e 2D Maze

* Pendulum swing-up

« Cart-pole/inverted pendulum

N
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Steps to Goal
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Pendulum Swing-Up Task
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eural Networks
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“. “Cart-Pole/lInverted Pendulum
Task
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Planning

* Planning: training the
value function and
policy from a learned
model of the
environment (i.e.
reinforcement learning
from simulated
experiences)

 Reduces training time

significantly

Steps ta Goal

3
7/ Experimental Feature -

2D Maze Task with Planning
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“.7 Experimental Feature -
Curiosity

 Curiosity: an intrinsic

_ Multiple Rewards Task with Curiosity
drive to explore

100
unfamiliar states 80 _ Planning
60 Planning and Curiosity
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of the environment
(used for planning)
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 The exhaustive RBF state representation is too slow
for high-dimensional state spaces. Possible solutions:
dimensionality reduction (e.g., using PCA or ICA),
hierarchical state and action representations, and
focused attention

« Temporal state representation (e.g., tapped delay
lines)
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