Verve: A General Purpose
Open Source
Reinforcement Learning
Toolkit

Tyler Streeter, James Oliver, & Adrian Sannier

ASME IDETC & CIE, September 13, 2006

[OWA STATE UNIVERSITY

AN

Motivation

Intelligent agents are becoming increasingly important.

Automatically cleans your floors
while you enjoy life!

[OWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Motivation

Most intelligent agents today are carefully designed
for very specific tasks

|deally, we could avoid a lot of work by letting the
agents train themselves

Goal: provide a general purpose agent
implementation based on reinforcement learning

Target audience: Application developers (especially
roboticists and game developers)

[OWA STATE UNIVERSITY

a9

St
)
“Arions

Reinforcement Learning

b

£ -5
Er J;‘;V

|

|

Learning how to
behave in order
to maximize a
numerical reward
signal

Very general: lots
of real-world
problems can be
formulated as
reinforcement
learning
problems

Y

Environment

—

Observation

HE NN

Reward

[]

Reinforcement
Learning
Agent

Action

[]

|

[OWA STATE UNIVERSITY

AN

|

N
L

~ Reinforcement Learning

« Typical challenges:
— Temporal credit assignment
— Structural credit assignment
— Exploration vs. exploitation
— Continuous state spaces

 Solutions:

— TD learning with value function and policy represented
as single-layer neural networks

— Eligibility traces for connection weights
— Softmax action selection

— Function approximation with Gaussian radial basis
functions

[OWA STATE UNIVERSITY

AN

/
)
“drions

Value function: maps
states to “values”

Policy: maps states to
actions

State representation
converts observations
to features (allows
linear function
approximation
methods for value
function and policy)

Temporal difference
(TD) prediction errors
train value function
and policy

Reinforcement Learning Agent

Observation
(time t)

=000

State
Representation

Reward
(time t)

L]

Policy

Action
(time t)

L]

Value
Function

-

>

Estimated
Value

L

Compute
TD Error

[OWA STATE UNIVERSITY

AN

'RBF State Representation

® o
® ° ® o ®
Input Data Point o

®
A ® o Py
o
o
° o ¢
® ° ¢
® °
°® °®
o
c ® °
O . ®
f)p]
o
g ° o o
c °®
) Y o ©) o ® °
®
°
°®
° ° ® o © ® °
Dimension 1 >

[OWA STATE UNIVERSITY

L, }?}\

T,

F__
/ J:ad'd
=

f

F i
v ©
=

" Verve Software Library

» Cross-platform library written in C++ with
Python bindings
« License: BSD or LGPL

« Unit tested, heavily-commented source
code

 Complete APl documentation

« Widely applicable: user-defined sensors,
actuators, sensor resolution, and reward
function

» Optimized to reduce computational
requirements (e.g., dynamically-growing
RBF array)

[OWA STATE UNIVERSITY

http://verve-agents.sourceforge.net/

Free Parameters

Inputs

— Number of sensors

— Choice of discrete or continuous (RBF)
— Continuous sensor resolution

— Circular continuous sensors

Number of outputs

Reward function

Agent update rate (step size)
Learning rates

Eligibility trace decay time constant
Reward discounting time constant

[OWA STATE UNIVERSITY

/I Define an AgentDescriptor.

verve::AgentDescriptor agentDesc;
agentDesc.addDiscreteSensor(4); // Use 4 possible values.
agentDesc.addContinuousSensor();
agentDesc.addContinuousSensor();
agentDesc.setContinuousSensorResolution(10);
agentDesc.setNumOutputs(3); // Use 3 actions.

// Create the Agent and an Observation initialized to fit this Agent.
verve::Agent agent(agentDesc);

verve::Observation obs;

obs.init(agent);

/| Set the initial state of the world.
initEnvironment();

[OWA STATE UNIVERSITY

C++ Code Sample (2/3)

/I Loop forever (or until some desired learning performance is achieved).
while (1)
{

I/l Set the Agent and environment update rate to 10 Hz.

verve:real dt =0.1;

/l Update the Observation based on the current state of the world.
// Each sensor is accessed via an index.

obs.setDiscreteValue(0, computeDiscretelnput());
obs.setContinuousValue(0, computeContinuousinputQ());
obs.setContinuousValue(1, computeContinuousinput1());

/[Compute the current reward, which is application-dependent.
verve::real reward = computeReward();

/l Update the Agent with the Observation and reward.
unsigned int action = agent.update(reward, obs, dt);

[OWA STATE UNIVERSITY

—
N %)
-

&
s

T

A

\

=)

)
(&

5

““ C++ Code Sample (3/3)

/I Apply the chosen action to the environment.

switch(action)
{
case O:
performAction0();
break;
case 1:
performAction1();
break;
case 2:
performAction2();
break;
default:
break;
}

// Simulate the environment ahead by 'dt' seconds.
updateEnvironment(dt);

[OWA STATE UNIVERSITY

Examples

[roen]
i

e 2D Maze

* Pendulum swing-up

« Cart-pole/inverted pendulum

N

[OWA STATE UNIVERSITY

Steps to Goal

150

100

50

Discrete Inputs
Continuous Inputs

Trial

| ‘ ‘ m [OWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Pendulum Swing-Up Task

0.8
0.6
0.4
0.2

-0.2
-04
-0.6
-0.8

Average Reward Per Time Step
o

0 50 100 150 200

Trial

RL//

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

eural Networks

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

. |

“. “Cart-Pole/lInverted Pendulum
Task

2000
1800
1600
1400
1200
1000
800
600
400
200

0 -

0 100 200 300 400 500 600 700 800

Trial Length (seconds)

Trial

[OWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Ty
N

,@a‘a

\4.?,-

0

R
I‘\“

Planning

* Planning: training the
value function and
policy from a learned
model of the
environment (i.e.
reinforcement learning
from simulated
experiences)

 Reduces training time

significantly

Steps ta Goal

3
7/ Experimental Feature -

2D Maze Task with Planning

200

150

100

50

RL Only
RL with Planning

S

20

40

60 80 100 120 140

Trial

[OWA STATE UNIVERSITY

“.7 Experimental Feature -
Curiosity

 Curiosity: an intrinsic

_ Multiple Rewards Task with Curiosity
drive to explore

100
unfamiliar states 80 _ Planning
60 Planning and Curiosity
 Provide extra rewards e @
proportional to E 0
uncertainty or “learning e 7
7 -60
progress o)
* DrlveS agents to -1000 10 20 30 40 50 60 70 80
Improve mental models Trial

of the environment
(used for planning)

[OWA STATE UNIVERSITY

\{\/E}.‘f_f_mif F u t u re WO rk

 The exhaustive RBF state representation is too slow
for high-dimensional state spaces. Possible solutions:
dimensionality reduction (e.g., using PCA or ICA),
hierarchical state and action representations, and
focused attention

« Temporal state representation (e.g., tapped delay
lines)

[OWA STATE UNIVERSITY

	Verve: A General Purpose Open Source�Reinforcement Learning Toolkit
	Motivation
	Motivation
	Reinforcement Learning
	Reinforcement Learning
	RL Agent Implementation
	RBF State Representation
	Verve Software Library
	Free Parameters
	C++ Code Sample (1/3)
	C++ Code Sample (2/3)
	C++ Code Sample (3/3)
	Examples
	2D Maze Task
	Pendulum Swing-Up Task
	Pendulum Neural Networks
	Cart-Pole/Inverted Pendulum Task
	Experimental Feature - Planning
	Experimental Feature - Curiosity
	Future Work

