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The Problem
• Simulated creatures and robots cannot 

adapt easily to complex, changing 
environments

• Most current approaches use static, 
“hand-designed” motor control 
mechanisms

• An ideal agent would:
– Learn motor control from direct experience at 

least as well as animals and humans
– Learn from a simple reward signal, not from 

explicit feedback (i.e. critic vs. teacher)
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Previous Work
• Simulated humans – standing, jumping, and walking 

tasks
• Learning agents represented as artificial neural networks
• Genetic algorithms (GAs) for “training”

– A fancy hill-climbing algorithm
– Can be used to search for good neural network parameters

• Training a neural network with a GA
– Start with a “population” of random neural networks
– Evaluate each one on some task
– Throw away the bad neural networks
– Mate the good networks to produce offspring
– Randomly mutate the new offspring

• Videos – simulated human standing, jumping
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Previous Work
• NEAT algorithm (Ken Stanley, UT)

– Principled crossover method using "historical 
markings" to keep track of which genes are 
compatible

– Speciation, making use of the historical 
markings to measure diversity

– Incremental growth from minimal structure, 
ensuring a search through the smallest fitness 
landscape; new structure only stays when it is 
beneficial

• Videos – simulated biped walking
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Current Direction
• Genetic algorithms worked ok for offline-training, but 

they don’t seem biologically-realistic
• GAs require an unnatural iterative, trial-based process, 

but the real world contains just one long trial
• A better solution would:

– Be more biologically-realistic
– Have a good mathematical foundation

• Why is biological realism important?
– Biological brains have already proven themselves as efficient 

learning mechanisms
– Copying biological learning mechanisms seems to be a good 

route to take
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Current Direction
• Reinforcement learning: “learning what to do so 

as to maximize a numerical reward signal”
• Strong mathematical foundation
• 3 essential components:

– Policy: maps states to actions
– Reinforcement signal: provides evaluative feedback
– Value function: stores a “value” for each state

• Good agents must:
– Try to learn the optimal value function
– Use the value function to improve its policy

• “Reinforcement Learning” by Sutton & Barto
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Current Direction
• Reinforcement learning’s roots

– Dynamic programming
• Given a perfect model of the environment, compute the optimal policy (think 

IBM’s Deep Blue)
• Basically searching through all possible future states
• Intractable for large (e.g. continuous) state spaces

– Monte carlo methods
• No model necessary
• Learn directly from raw, sampled experience
• Usually must wait until the end of a long sequence before learning anything

– Temporal difference
• Combination of dynamic programming and monte carlo
• Computes the difference in value estimations between successive states
• TD error = next reward + next value estimation – current value estimation
• Only non-zero TD errors cause learning (i.e. surprising events cause 

learning; no learning once rewards are fully predicted)
• Eventually, neutral stimuli predict rewards
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Current Direction
• Why neural networks?

– Way too many states to keep track of 
internally

– Neural networks can approximate complex 
state spaces with a few parameters

– Biologically-realistic
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Current Direction
• If the reward comes after several actions, 

which action deserves the reward?
• Credit assignment problem

– Structural
– Temporal

• Eligibility traces
– Each action leaves a decaying trace
– Only eligible actions get reinforced
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Current Direction
• Planning

– Learning how the world works by building an 
internal model

– Using the model to learn from “simulated 
experiences”

– The better the model, the more useful the 
planning

– Strongly linked to dynamic programming
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Current Direction
• Main ideas from neuroscientific research

– Dopamine neuron activity is somehow related 
to rewards

– Most interesting hypothesis: dopamine 
neurons encode reward prediction errors

– Dopamine neuron activity is very similar to 
temporal difference error signal
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Current Direction
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Figure taken from Suri, R. E. (2002). TD models of reward predictive responses in 
dopamine neurons.



What is Verve?

• Reinforcement learning for general motor control tasks
– Ground and air vehicles
– Wheeled and legged robots/artificial creatures
– Any controlled system with complex behaviors

• Real and simulated agents
• Biologically-inspired methods

– Artificial neural networks for function approximation
– Reward prediction mechanisms

• Open Source software
• Current status

– Finishing background research in neuroscience and machine learning
– Testing new reinforcement learning algorithms on benchmark tasks
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Future Plans
• Creating sample applications

– Cart-pole test
– Mountain-car test
– Simulated creatures

• Planning/simulated experiences
• Train agents in simulation, then transfer 

them to real robots
• SETI @Home-like capabilities to distribute 

computations
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Check the Verve website for updates: 
www.vrac.iastate.edu/~streeter/verve/main.html
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