
 1

Medieval Playground

Matt Newcomb
Virtual Reality Applications Center

Iowa State University
Ames, IA 50014

talenos@vrac.iastate.edu

Abstract

This paper describes an interactive virtual
environment in a medieval setting. The
scenery for this virtual environment includes
a terrain and castle ruins the user can
explore. The user will be able to interact
with the environment in exciting ways.
Some examples are hang gliding and
launching objects with catapults. An
extremely interactive world such as this can
be a great tool to show people the
capabilities of virtual reality and go beyond
simple navigation.

Keywords

Medieval playground, virtual reality, virtual
environment, interactive, dynamics.

Introduction

The Medieval Playground is a virtual
environment with castle ruins (Figure 1) and
a surrounding terrain (Figure 2). The
application is being developed to be used to
demo the interactivity that is possible in
virtual environments.

Figure 1: Castle Ruins

Tyler Streeter
Virtual Reality Applications Center

Iowa State University
Ames, IA 50014

streeter@vrac.iastate.edu

Figure 2: Terrain

Inspiration

The desire to go to interesting places and
do dangerous things is the general
inspiration behind this project, along with all
kinds of medieval stories and films. The
world is both realistic but also has a fantasy-
like quality to it, which makes it a great
setting for a virtual environment where
anything can happen.

Some computer games such as Microsoft's
Midtown Madness [1] and the popular Sims
series by Maxis [2] give players freedom to
interact with a world without having any
concrete goals. These kinds of games are a
taste of the kind of virtual world the user
should be able to explore in our application.
What the user experiences should be based
on what they think up and decide to do, not
an experience that is pre-decided by the
application programmer.

We are taking this inspiration to create a
realistic, virtual world with an action-
oriented, adventurous theme that the user

 2

can explore freely. The user should be
inspired to try new things based on the
environment that they are in and the
placement of usable objects throughout the
world.

Users

The intended users for this project are
basically everyone. There are only a few
simple gestures that people need to know to
move about the world and many people can
figure them out just by trying what is natural
to them. There will be no menus or any
GUI to operate or learn so the complexities
of the program will be better hidden from
them.

This application is meant to be someone’s
first experience with virtual reality. They
won’t need any technical knowledge to
interact in the environment so they will be
free to take in the entire experience.

Background

Graphics are usually the showcase of high-
end virtual reality applications. They can
create almost perfect models of real life
places or bring to life a world that could
never exist. With today’s graphics power,
realistic images and effects can be rendered
in real time making it sometimes difficult to
distinguish reality from virtual reality.

The problem that some of these applications
fall to is their lack of interactivity. The first
time through one of these virtual
environments may be very stunning, but the
feeling can fade quite quickly and there is
very little experience that can be gained
from going through the environment a
second time.

The Medieval Playground was created to
highlight the interaction between the user
and the world so they have ways to interact
with the world beyond choosing the
direction of navigation. This increased
interaction gives the user a sense of presence
that cannot be achieved by graphics alone.

Concept

We want the user to control where they go,
so they can choose to go to places that most
people would never think of exploring, like
trying to swim through a river (Figure 3).
This makes the experience more satisfying
to the user because they have ownership of
the choices they make; the experience is all
theirs, not pre-scripted by a programmer or a
virtual tour guide. To achieve this goal, we
focused our efforts on a simple, intuitive
input system and on a high level of
interactivity in the virtual environment.

The application should be simple enough so
that a child could operate it safely and
without any problems [3], but still have
enough interactivity in it that even an
experienced VR veteran will be able to have
fun while performing some of the
interactions inside the environment. The
interactions and dynamics in the world
should all be realistic so that they are more
believable to the user.

Figure 3: Underwater

Most people play a passive role during their
first virtual reality experience because often
the controls are difficult and hard to master,
or only in the hands of an experienced VR
user, or there are many people in a group.
We would like to make this role more active
with our project. To do this, we created a
virtual reality application with a simple user
interface that still presents users with a wide
array of interactive components.

 3

Previous Work

People, especially children, are flocking to
see virtual reality applications due to the
hype that has been generated by the media
lately and their desire to see new and cutting
edge technology [3]. This means that
applications meant for a wide public
audience need to be very simple to use so
that even a child could operate the system.

Implementation

At first, the most daunting portion of the
project was the interactive components. We
asked ourselves how we could maximize the
level of user interactivity in the virtual
environment and stay within the time
constraints of a semester-long project. We
decided to focus on simulated physics in our
virtual world to give users this high level of
interactivity. Therefore, the three major
components of our project are: the graphics,
the dynamics, and the input method. In
addition, we decided to make both a VR
version and a desktop version of the
application.

Graphics

We chose to use OpenGL for our project and
decided not to use a scene graph. Because
our virtual environment does not have a
complex hierarchy of objects, a scene graph
would not have been beneficial, although we
did initially begin our project using one.
Initially the project started in an OpenSG
scene graph, but it wasn’t worth the extra
complexity.

The 3D textured models in our project were
created using Discreet’s 3D Studio Max.
We chose to export our models into the
WaveFront OBJ format for loading into our
project because it is a simple format that is
widely supported. We tried to optimize the
size of our texture files by using JPG
compressed pictures.

Other graphical effects in the project were
done using OpenGL. An example of one of

these effects is the fog. Our application
normally uses gray fog, but the fog color
changes to blue when the user goes
underwater.

Dynamics

To create realistic interactions we needed a
way to simulate physics. We decided to use
the Open Dynamics Engine [4] to help with
these realistic simulations. This open source
software handles collision detections
between primitive shapes (e.g. spheres and
cubes) and arbitrary triangular meshes (e.g.
rolling terrains). It also simulates realistic
physical interactions among 3D objects,
allowing programmers to deal only with
forces while the dynamics software handles
positions, orientations, velocities, etc. The
dynamics engine then returns all objects’
positions and orientations to be used by the
graphics API. Though this system can be
used to handle the trivial task of keeping the
user from walking through walls, it can also
empower the user to interact in new ways
with objects in the environment.

Objects in our application have two parts: a
graphical part and a dynamics part. The
dynamics part is the part that deals with all
the forces and collision, while the graphics
part controls how the objects are displayed
on the screen. This means that a complex
shape like an acorn can be simply
represented by a sphere in the dynamics
world. This is very useful for shapes that can
be approximated by one of the dynamics
primitives. The towers in our application
have intricate tops, but their representation
in the dynamics world is simply a capped
cylinder.

Open Dynamics Engine includes a powerful
array of functions. Some of the most
common functions we used were:

dWorldCreate – creates a simulated physical
world in which to insert 3D objects.

dBodyCreate – creates a physical object
(just a point mass).

 4

dCreateSphere/dCreateBox – creates the
physical representation of a physical object.

dBodySetPosition – sets the position of a
physical object in world coordinates.

dBodySetMass – adjusts the mass of a
particular physical object.

dJointCreateHinge – creates a hinge joint
between two physical objects; this joint
constrains the motion of the two objects to
keep them from moving far apart.

dBodyAddForce – add a force to a physical
object in a particular direction; this type of
action is very common and replaces the
typical 3D graphics paradigm of setting
objects’ positions explicitly.

dSpaceCollide – checks for collisions
among all objects in the world and adjust the
forces on each object appropriately.

dWorldStep/dWorldStepFast1 – moves the
physical world ahead by a given amount of
time (in our case, we adjusted this time delta
based on the application’s frame rate to
make the physics work in real time); the
dWorldStep function is more accurate, but
the dWorldStepFast1 is more optimized for
real time applications and adjusts the
amount of time spent calculating physics
based on a value set by the programmer.

Using a robust dynamics engine creates
endless ways for users to interact with the
virtual environment without being forced to
see pre-scripted animations. For example,
users in the Medieval Playground can pick
up bricks or pieces of wood, carry them to
new locations, and throw them (Figure 4).
There is also the possibility of using objects
as tools to perform some task (e.g. stacking
blocks to climb onto a high ledge or using a
hang glider to float across a chasm).

Figure 4: Throwing Bricks

The dynamics engine allowed us to create a
realistic trebuchet (Figure 5) that works
based on physical principles rather than pre-
scripted animation. This trebuchet lets users
launch various objects found in the world. It
even lets users launch themselves through
the air if they decide to. The dynamics
engine lets a lot of interesting interactions
happen and it allows realistic interactions
that the users comes up with on their own,
without the programmer having to worry
about every action that the user might do.

Figure 5: Simulated Trebuchet

Input Method

We chose to use a pair of gloves as the sole
interface because we thought it would be
more natural to use gestures than a wand or
other device. The user will have no other
visual interface to interact with, so other
input devices don’t make sense in our
situation.

 5

We wanted to keep the number of gestures
as low as possible and make them very
simple and intuitive. This would give the
user more freedom to explore and interact
with things since they don’t have to worry
about learning all the gestures and don’t
need to waste as much time training to use
the equipment.

For navigation we used the pointing gesture,
which would move the user in the direction
they were pointing and allow them to rotate
while they were pointing as well. Rotating
the user while moving them forward makes
it difficult to orient the world specifically,
but it is smoother than having a separate
rotate and move command. Ideally the user
should be able to just walk where they
would like to go.

To implement the throwing action, we came
up with a simple method to approximate the
throwing direction and strength. In our code
we maintain a list of the past five positions
of the user’s hand. Then, we the user opens
his or her hand (when throwing or dropping
an object), we calculate a throwing vector,
using the past five hand positions to
determine the strength and magnitude of this
vector. This effectively gives us how much
force to apply to the object and which
direction it should be forced.

The most natural gesture for interacting with
objects in the world is a closed fist. All of
the objects in the environment are used by
grabbing or grasping the object. Even our
idea for using a hang glider would just
require the user to grip on to the glider by
making two closed fists.

These two gestures, grabbing and pointing,
are the only ones that are needed for moving
and interacting in our world, so there are a
small number of simple gestures for people
to remember. Most people probably won’t
even need to be told what they are to figure
it out.

List of Classes

The following list of classes presents the
general structure of our project
implementation:

Base3DObject – base object from which all
other objects in the world are derived; has a
position in world coordinates.

ODEObject – derived from Base3DObject;
adds Open Dynamics Engine functionality
to the object; each ODEObject can
optionally be represented visually by an OBJ
model.

OBJModel – encapsulates an OBJ model.

LightObject – an OpenGL light object
derived from Base3DObject; because its
parent class has a position, it can be moved
easily by the programmer.

ODEWorld – encapsulates the ODE world
functions; includes such universal factors as
gravity, friction, and overall physics
accuracy.

ODECamera – represents the position of the
user; uses an invisible sphere to keep the
user from walking through objects – the user
moves around by applying forces to this
object.

ODEBox – simple class to represent ODE’s
primitive box shape.

ODESphere – simple class to represent
ODE’s primitive sphere shape.

ODECappedCylinder – simple class to
represent ODE’s primitive capped cylinder
shape.

ODETrimesh – uses geometry loaded from
an OBJ file to create an arbitrary triangular
mesh; useful for creating terrains.

SkyBox –simplifies the creation of a
skybox.

 6

Timer – used to get the amount of time
elapsed since the previous frame.

ODEHuman – composite object made from
primitive ODE shapes joined together to
represent a human body.

Neuron – represents an artificial neuron;
used solely by the NeuralNet class.

NeuralNet – a collection of simulated
neurons that can be used to control an
ODEHuman.

Desktop Version

The desktop version of the application will
allow people to interact with the
environment in a 2D window on a PC.
Navigation and interaction must be mapped
to the keyboard and mouse, so it is less
intuitive but allows someone to get a feel for
the environment without having to enter a
CAVE environment. We designed the code
for the desktop version similar to an
ordinary VRJuggler application so that we
can port code between the desktop and VR
versions easily.

The desktop version will be the testing bed
for the improvements that we plan to
implement in our project because it is
slightly more stable and our dynamics
engine works better on Windows and Linux
than it does with Irix.

VR Version

The VR version uses most of the same code
as the desktop version but runs in VRJuggler
so that it can be configured to run in most
VR facilities. We originally designed the
application to be used with a HMD, but we
later decided that it would be better to use a
CAVE environment because it gives the user
more space to move around freely.

We recommend using gloves for interaction
because it is more natural than a wand
device for our type of application. The two
main interactions the users will perform are

navigating (by pointing) and picking up and
releasing objects (by grabbing). Other
devices, like a wand, can still be
implemented, but would not be as natural to
use. We hope that we can continue working
on this project in the future so that it can be
used in tours and demos to show the more
interactive side of what virtual reality can
accomplish.

Difficulties

The most notable difficulty we had was
porting our software to the Irix operating
system. Open Dynamics Engine would not
compile with the Irix MipsPro compiler, and
we could only compile VRJuggler with
MipsPro on Irix. Thus, our two main pieces
of software would not work together.
Because of this problem, we eventually
decided to work with Linux instead.

There was initially some trouble with the
5DT wireless gloves at first because the
transmitters for them were switched around,
so when we tested the gloves they gave us
slightly odd results at first. Since we
decided to switch to Linux and run the
application on the baby cave, we decided
wired gloves would work because the user
won’t be turning around so much. We still
haven’t been able to get the gloves working
in Linux since there isn’t much support for
this at the VRAC. Presently, we are
developing our project with wand-based
interaction. When we have time, we will
implement our glove-based interaction
ideas.

A big concern from the beginning was if the
dynamics engine’s collision detection would
perform well if our terrain was a triangular
mesh. After the terrain was implemented we
determined that there was not a major
performance loss. Collisions between the
user and the terrain worked well, but some
of the primitive dynamics objects did not
collide as well, specifically the cubes and
capped cylinders. Spheres seemed to work
the best, so a possible change is to try to
represent most objects as spheres. A lot of

 7

the accuracy in the collision is given up for
speed, but we can get collisions that are
realistic enough that most people will not
notice.

Conclusion

We started this project with very ambitious
goals, but because it was the first time that
either of us has developed a virtual reality
application, we didn’t know exactly how
much we could accomplish. We are happy
with the results that we achieved this
semester and that we got most of the main
aspects of the application to work like we
wanted them to.

Once we got over the initial hurdle of
learning the insides of VRJuggler and
dealing with some hardware issues, we were
able to get a lot of work done. Future VR
projects that we work on should go a lot
smoother after going through this learning
process.

Future Work

We plan to continue work on this project by
adding more kinds of interaction and
enhancing the visual effects. Specifically,
we would like to focus on interactions,
modeling and textures, sound effects,
dynamic environmental effects, and artificial
intelligence/artificial life. These are
incremental changes that can be added to the
project without having to change the overall
structure. The medieval playground could
eventually be modified to have certain goals
that the user needs to accomplish or perhaps
even tell a story.

As far as the software goes, we would
eventually like to get a version that works on
Irix so that we can utilize the C6 like we had
originally intended. This will still allow use
to use the same source code because of the
portability of VRJuggler.

Interactions

The purpose behind this application is to
provide lots of different ways that the user
can interact with the world. Users should be
able to have a huge arsenal of different
objects throughout the world that they can
interact with.

Some other interactions we might try to
implement are ones that also could be
figured out by using gestures that make
sense. A person could fire a bow and arrow
at a target by holding the bow in one hand (a
closed fist) and the arrow in the other
(grasping with their pointer and middle
finger). The user might be able to find a
magic wand and cast spells by performing a
gesture over time, like a figure eight.

Modeling and Textures

To create a more believable environment,
we will spend more time creating 3D models
with realistic textures. Making our existing
models more detailed and creating new
scenery objects will surely add to the
realism which will make the user feel more
absorbed in their environment.

Some notable things to fix are: the texture
of the ground underwater, more foliage, a
path up to the castle from the starting point,
as well as models for the other forms of life
that we hope to include like fish, birds, and
other animals.

Sound Effects

Sound effects and music are a very
important part of any virtual environment.
We would like to make use of high quality
music from medieval times to play in the
background. Additionally, sound effects
occurring when objects collide would
naturally increase the level of realism in our
virtual world such as splashes, footsteps, and
other object-to-object impacts.

Eventually, human models may be added to
the environment, so speech capabilities are

 8

also a possible upgrade to the application.
The user could have conversations with
them or participate in a live action story by
listening to what they have to say.

Dynamic Environmental Effects

This category could include effects such as
rippling water or shifting sun rays that
change with the time of day (along with a
fog effect that clears when “morning” ends).
A particle engine would also be useful to
create rain, snow, leaves that can be blown
by the wind, perhaps even fall off if the
wind has a great enough force, and of course
fire. This will make each experience in the
environment a little different.

Artificial Intelligence/Artificial Life

Artificial Intelligence and Artificial Life are
things we would like to include in our
project. This would allow us to put realistic
looking behavior into our environment
without using too much processing power.
This will add a life-like quality to the world
and will hopefully make for a richer
experience.

One of these additions involves virtual
people that can walk around the world
without using pre-scripted animations [5, 6].
This idea already been tested (Figure 6) with
virtual people that are controlled by neural
networks.

Other ideas include a path finding squirrel
that will run to an acorn (using the A* path-
finding algorithm) if you throw one on the
ground, realistic flocks of birds flying
overhead, fish swimming through the water
in schools, and bees swarming [6] the user if
he or she were to upset them by maybe
disturbing their virtual bee hive with a rock
or stick. Perhaps users will even be able to
fight with a virtual knight in shining armor
with a sword that uses the dynamics engine
to calculate the force of each blow. This
would be along the lines of similar
applications [7] that focus on virtual

environments with artificially intelligent
agents.

Figure 6: Artificially Intelligent Human

References

1. Midtown Madness.Microsoft Corporation.
http://www.microsoft.com/games/default.as
px

2. The Sims. Maxis. http://thesims.ea.com

3. M. Roussou, (2000). Immersive
Interactive Virtual Reality and Informal
Education. In Proc. of i3 spring days
workshop on User Interfaces for All:
Interactive Learning Environments for
Children, Athens, Greece.

4. R. Smith. Open Dynamics Engine.
opende.sourceforge.net

5. T. Reil, Husbands. Evolution of Central
Pattern Generators for Bipedal Walking in a
Real-Time Physics Environment. IEEE
Transactions in Evolutionary Computation.
pp. 159-168, April 2002.

6. K. Sims. Evolving Virtual Creatures.
ACM Computer Graphics (SIGGRAPH '94).
pp. 15-22, 1994.

7. D. Thalmann, C. Babski, T. Capin, N.
Magnenat Thalmann, I. S. Pandzic. Sharing
VLNET worlds on the WEB. Computer
Networks & ISDN Systems. Vol. 29, No. 14,
pp. 1601-1610, 1997.

