
ComS 657x Final Project Report
Tyler Streeter

12/13/04

1 Overview

For this project I started with the idea of
combining fire with simulated physics.
Fire in most interactive applications
today does not spread or affect things
physically, so I wanted to try combining
these two elements in my project.
Specifically, I wanted to create a
physically-simulated cabin that could be
burned down. The three main
components of this project were: 1) a
description of the scene (including visual
and physical properties) stored in an
XML file, 2) fire that could spread from
one object to another, and 3) flammable
boards that could break off the main
structure after burning for a while. This
report discusses how the different
aspects of this application were
implemented and mention future work.
The project website, including pictures
and executables, is:
www.vrac.iastate.edu/~streeter/cabin/
cabin.html.

2 Methods

This section describes the technical
methods used. It covers the use of
simulated physics, the steps needed to
create visual and collision meshes, the
OGRE graphics library, and the
interaction method used to enable users
to carry and position objects.

2.1 Simulated Physics
The available options for simulated
physics were Novodex [1] and Open
Dynamics Engine (ODE) [2]. Novodex

is an excellent library and is free for
non-commercial use on Windows. I
chose ODE because it is Open Source,
free to use on all platforms, and I have
used it before successfully.

Two limitations of using ODE were that
it’s API is not terribly simple and that it
lacks some features I needed (e.g.
switching easily between static geometry
and dynamics objects, an intuitive
combination of rigid bodies and collision
meshes, loading of scene descriptions
from files, etc.) I worked with Andres
Reinot and Alan Fischer to develop an
abstraction layer called Open Physics
Abstraction Layer (OPAL) [3]. This
Open Source library provides an abstract
API for simulated physics that can be
extended to use other physics simulation
libraries (currently it only supports
ODE). One of the features I
implemented for this project was an
XML file importer. This loads XML
files which describe scenes of physical
objects, including solid bodies and
joints, making it possible to store
“blueprints” for vehicles, ragdolls,
buildings, etc. Each solid body node in
the XML tree stored data on the object’s
dimensions, transforms, material
parameters, and any extra user-defined
parameters (e.g. which visual mesh to
use for a particular solid body).

2.2 Fire Implementation
The fire was created by positioning a
bounding sphere around each fire source.
At a random time between three and ten
seconds, the fire would check which

flammable objects were intersecting its
sphere. The relatively long times
between these extra collision checks
kept the simulation fast and added to the
fire’s unpredictability. New fires would
start at the intersection points. A
fraction of the fire sources had light
sources attached; these lights flickered at
times and grew dim before the fires
disappeared. Care was taken to keep the
total number of fires manageable since
each one caused a significant
computational burden. At first, each
board on the cabin was a static object.
After burning for some time, however,
the boards became dynamic and fell off
the cabin. This enabled the whole cabin
to collapse after burning for a long time.

2.3 Content Creation
I needed to have an effective system for
creating XML files for OPAL. Two
alternatives I considered were writing an
exporter for 3D Studio Max [4] or for
Blender [5], an Open Source modeling
tool. 3D Studio Max has its own
scripting language for writing things like
exporters. Blender uses Python for its
scripting system. I chose to write a
Python exporter for Blender for three
reasons: 1) I wanted to learn Blender
since it is free and Open Source (I can
Blender skills with me anywhere without
having to buy an expensive modeling
tool), 2) I wanted to learn Python
anyway, and 3) since it uses Python for
scripting, it has a lot of libraries
available from the Python community.

Blender’s Python API exposes all the
necessary data for each object in a scene.
I used Python’s built-in XML library to
generate a DOM tree of all the objects in
a Blender scene. It was fairly simple to
create an exporter that allows users to
select objects to export and save the

XML tree to a file for OPAL.
Additionally, I used Blender to generate
the visual meshes for my objects. I used
an existing OGRE (see below) exporter
for Blender to save these meshes in
OGRE’s mesh format.

2.4 OGRE Graphics Engine
I used OGRE (Object-oriented Graphics
Rendering Engine) [6] to render the
graphics. OGRE has a simple API and
contains several useful features I needed
for my project. Besides learning to use
its core functionality, some of the
features I used were its material and
particle scripting systems and shadow
generation. Material scripts in OGRE
consist of lists of named materials. Each
material contains techniques, passes, and
texture units. Different techniques for a
single material describe distinct ways to
render a particular material; if the
primary technique isn’t support on a
given graphics card, the next technique
is used. Also, techniques can be used as
different levels of detail. Every
technique contains one or more passes to
be executed during rendering. Each pass
contains lighting information and zero or
more texture units. A pass can also refer
to external vertex and fragment
programs.

OGRE’s particle scripts contain one or
more particle systems, each with its own
emitter and affectors. Every particle
system refers to a material in the
material script files which tells the
rendering system how to draw the
particles. In this project I used separate
particle systems (and materials) for the
smoke and the fire.

The shadows in OGRE can be setup in
various ways, but every method has
benefits and drawbacks. The

possibilities include additive stencil,
modulative stencil, and modulative
texture shadows. I had a problem when
I compiled my application on a machine
using an ATI video card and ran the
application using an nVidia card. I think
this problem is due to OGRE’s
automatic vertex program generation for
stencil shadow calculations. The vertex
program generated on the ATI card
machine was not compatible with the
nVidia card.

See the OGRE manual for a quick
overview [6] of other features.

2.5 Grasping Interaction Methods
To enable users to start fires in arbitrary
locations, the application needed a
simple way for them to pick up and
position objects. My solution was to use
a spring system that positions and orients
an object in front of the camera
whenever the user wants to pick up
something. (Clicking a mouse button
casts a ray into the scene and finds
objects within grasping distance.) This
spring system was added as a feature to
OPAL. The benefit of this system is that
the grasped object moves realistically; it
doesn’t just pop into place in front of the
camera. Users can even throw objects
by moving the mouse to one side quickly
before releasing the mouse button.

3 Future Work

This section discusses possible features
that could be added. First, the scene
needs more art content. Trees
surrounding the cabin, a detailed ground
texture with dirt paths, and more
burnable buildings would add to its
immersiveness. OPAL could also use a
better system for content generation that
integrates visual and collision mesh

generation in a single task. For example,
a Blender script could take a visual mesh
and automatically generate a collision
mesh to fit its bounds. This could also
be implemented in the OPAL library
itself. The physics simulation package
Novodex does this pretty well; it fits
collision boxes (using an octree) or
convex hulls to arbitrary visual
geometry.

Sound effects should also be added.
Ambient noises from the woods at night
(e.g. owls and crickets) and fire pops and
hisses would make the environment
more believable. Each fire source could
emit noise, making a loud roar after a
while. Finally, I would like to make this
application work in VR Juggler. I think
it would make a great demo for a cave
display with a tracked glove used for
interaction.

References

1. Novodex, www.novodex.com

2. Open Dynamics Engine,
www.ode.org

3. Open Physics Abstraction Layer,
opal.sourceforge.net

4. 3D Studio Max,
www4.discreet.com/3dsmax

5. Blender, www.blender.org

6. OGRE, www.ogre3d.org

